BU-704: How to Transport Batteries
Unresolved airplane crashes that were likely caused by batteries catching fire onboard during flight include the Asiana Airlines 747 near South Korea in July 2011, a UPS 747 in Dubai, UAE in September 2010 and a UPS DC-8 in Philadelphia, PA in February 2006. These events prompted changes to the UN Manual of Tests and Criteria in how batteries are certified for transport under UN 38.3.
Safety prompted authorities to tighten the rules when transporting batteries. Although lithium batteries get the most attention, the Federal Aviation Administration (FAA) says that based on records from 1991 to 2007 it was only a factor in 27 percent of all incidents. Lead acid, NiMH, NiCd and alkaline are also to blame. Reports say that short circuit, a preventable problem that can be solved with better packaging, is the largest problem. Figure 1 shows unprotected cells that can cause an electrical short by touching; propagation can create a chain reaction releasing a large amount of energy.
Figure 1: Unprotected batteries
Much blame goes to faulty. Regulatory authorities recommend putting small batteries into clear plastic bags and placing them in a firm box with good padding. Limit the content per box.
Lead Acid
Figure 2. Class 8 label indicating corrosive substance
Spillable lead acid batteries are regulated as dangerous goods under Class 8, controlled by UN 2794. These batteries are considered dangerous goods because of the possibility of fire if shorted. Furthermore, an acid spill can cause personal injury and property damage. Figure 2 shows the HAZMAT Class 8 label that is commonly seen on trucks. The shipping rules are simple, well established and make common sense.
When transporting Class 8 goods, note that a vehicle can only carry one type of hazardous material. Stack batteries upright on a wooden pallet, place honeycomb cardboard between layers and limit stacking to three layers per pallet. Wrap the pallet with shrink-wrap to improve stability. Add the “Corrosive” label, UN 2794 identification number and mark: “Wet, filled with acid.” Provide bill of lading with description of hazardous material, company and shipper’s name. Figure 3 shows do’s and don’ts.
Figure 3: Do’s and Don’ts of shipping batteries by ground
Protect batteries from short circuit by placing cardboard insulator pads between layers and shrink-wrap. Failure to comply can lead to fines.
Some wet, non-spillable sealed lead-acid batteries grouped under UN 2800 are exempt from Class 8. The battery manufacturer must declare how a battery is regulated on its associated Material Safety Data Sheet (MSDS) and most AGM (absorbent glass mat) batteries can be shipped under the simpler UN 2800 directive. MSDS contains information on the potential health effects of exposure to chemicals or dangerous substances and on safe workplace procedures when handling chemical products.
Different rules apply when shipping damaged batteries. A lead acid battery is considered damaged if the possibility of leakage exists due to a crack or if one or more caps are missing. Transportation companies and air carriers may require draining the batteries of all acid prior to transport. Place damaged batteries in an acid-resistant container and add soda ash to neutralize any acid that might spill. Separate damaged and intact batteries.
Nickel-based Batteries
Nickel-based batteries have no transport limitations; however, some of the same precautions apply as for lead acid in terms of packaging to prevent electrical shorts and safeguard against fire. Regulations prohibit storing and transporting smaller battery packs in a metal box. If there is a danger of an electrical short, wrap each battery individually in a plastic bag. Do not mix batteries with coins and house keys in your pocket.
Lithium-based Batteries
The largest changes in shipping directive are with lithium batteries, and with good reasons. Li-ion is the fastest growing battery chemistry and already in 2009, 3.3 billion Li-ion were transported by air. Safety is an ongoing concern, and an airline-pilot association asked the FAA to ban lithium batteries on passenger aircraft. This came into effect in 2016 and lithium batteries are now shipped in cargo airplanes only.
Lithium batteries can only be transported after passing UN 38.3 testing requirements. In spite of these precautions, the U.S. Federal Aviation Administration (FAA) recorded 138 airport and air incidents between 1991 and 2016 involving lithium batteries. They involved smoke, heat and fire related to battery-operated devices such as e-cigarettes, laptops and mobile phones. Some incidents occurred before takeoff and the batteries were removed from the aircraft. Battery fires in flight were extinguished with halon type fire extinguishers and water, by placing the damaged device in a thermal battery containment bag that some airlines carry. Failing batteries in the cargo hold that were inadvertently checked into luggage required emergency landings.
Not all incidents are reported to the FAA, but the number of reported incidents is up from 2015. Recorded failures in 2016 alone involved 13 e-cigarettes, four laptops, seven mobile phones/tablets and seven spare batteries. E-cigarette incidents increased notably, while mobile phone and laptop events remain moderate considering the number of such devices in use.
Since 2008, lithium batteries can no longer be placed in checked baggage; they must be carried onboard. Air travelers are reminded of how many batteries they can carry with a portable device and as spares. Quick access to a fire extinguisher enables putting out a fire in the cabin should one take off. A coffee pot served as the fire extinguishing device for a flaming laptop battery in one reported incident. This is not possible with a burning battery in the cargo hold.
Transported lithium-based batteries are divided into two types: The rechargeable lithium-ion is primarily found in mobile phones and laptops; the non-rechargeable lithium-metal with added restrictions because of its high lithium content is used in sensing devices as well as in some consumer grade AA, AAA and 9V formats. Airlines allow both types as carry-on, either installed in devices or carried as spare packs as long as they don’t exceed the following limitation of lithium or equivalent content:
2 grams per battery for non-rechargeable lithium batteries, also known as lithium-metal.
8 grams per battery for a rechargeable lithium-ion. This amounts to a 100Wh battery.
25 grams total per passenger for all Li-ion combined, amounting to 300Wh.
The lithium content of a lithium-metal battery is printed on the label. Li-ion, on the other hand, uses equivalent lithium content (ELC) that is calculated by multiplying the rated capacity (Ah) times 0.3. For example, a 1Ah cell has 0.3 grams of lithium. A modern 18650 cell with a capacity of 3.3Ah contains about 1 gram. The 8-gram limit permits a 26Ah battery, or 95Wh (Ah multiplied by the Li-ion cell voltage of 3.6V equals Wh). The 18650 is a standardized Li-ion cell of 18mm in diameter and 65mm in length, and is used in laptops, power tools and other devices. Most laptop batteries are in the 60Wh range.
While regulations limit the Li-ion battery to no larger than 100Wh, each passenger is allowed to carry two spare packs of 160Wh each, not exceeding 320Wh in total. The airlines recommend placing each battery in a clear plastic bag to prevent electric short. Batteries that are contained (non-removable) within a device and are not easily removable are exempt from the rules. These include electric watches, smartphones and laptops but not power tools with interchangeable battery packs. (See BU-704a: Shipping Lithium-based Batteries by Air)
All lithium batteries are considered to be dangerous goods and transporting them requires compliance with Class 9 directives. However, exemptions are made when shipping these batteries in small quantities. Personnel transporting lithium batteries commercially must be trained. Organizations such as iHazmat or the International Compliance Center (ICC) educates shippers and packers in the handling of dangerous goods consistent with to International Air Transport Association (IATA) requirements and issues a certificate of compliance to those participants who pass a written examination. Those not familiar with these restrictions often ask some of the following questions:
| Q: | Must consumer-type lithium-ion batteries always be shipped under Class 9? |
| A: | No. Most Li-ion in consumer products are less than 100Wh and an exemption is made here but CAUTION labeling is required. |
| Q: | What quantities can I ship outside of Class 9? |
| A: | Cells with a maximum rating of 20Wh and not exceeding 8 in quantity, or 2 batteries with a maximum rating of 100Wh each as part of Section II. (See BU-704a: Shipping Lithium-based Batteries by Air) |
| Q: | When does Class 9 apply? |
| A: | Lithium-based batteries classified under Section IA and IB. |
| Q: | Must lithium-ion batteries be tested for shipment? |
| A: | Yes, all Li-ion must be tested according to UN 38.3. Exceptions are made for prototypes and testing purposes. Refer to CFR 49 173.185 (e) for requirements regarding the shipment of cells or batteries that have not been tested to the requirements to UN 38. |
Each PI is further divided into Sections representing IA, IB and II (Roman numerals). IA is most stringent, and for simplicity this article lists the less restricted packaging first:
| PI 965 | Loose Li-ion cells and packs (UN 3480) |
| PI 966 & 967 | Li-ion with/in equipment (UN 3481) |
| PI 968 | Lithium-metal cells and battery packs (UN 3090) |
| PI 969 & 970 | Lithium-metal with/in equipment (UN 3091) |
Each PI is further divided into Sections representing IA, IB and II (Roman numerals). IA is most stringent, and for simplicity this article lists the less restricted packaging first:
| Carry-on | Maximum 100Wh, passenger can take 2 spares up to 160Wh each, not exceeding 320Wh. No check-in allowed. |
| Section II | Shipment of small Li-ion in low numbers. These can include up to 8 cells not exceeding 20Wh each and up to 2 packs not exceeding 100Wh each at a total weight of 2.5kg. Batteries must be at 30 percent state-of-charge (SoC) for shipment. Persons preparing such shipment is exempt from dangerous goods training, but must be provided with “adequate instruction.” |
| Section IB | Shipment of small Li-ion in low numbers. These can include up to 8 cells not exceeding 20Wh each and up to 2 packs not exceeding 100Wh each at a total weight of 2.5kg. Batteries must be at 30 percent state-of-charge (SoC) for shipment. Persons preparing such shipment is exempt from dangerous goods training, but must be provided with “adequate instruction.” |
| Section IA | Larger Li-ion products under Class 9 dangerous goods. Cells can be larger than 20Wh and battery packs can exceed 100Wh, but the package limit is 35kg. Batteries must at 30 percent SoC. Training and certification is mandatory. (See BU-704a: Shipping Lithium-based Batteries by Air) |
See also Dangerous Goods Documentation, entitled “2017 Lithium Battery Guidance Document.”
Be mindful when traveling by air
Shippers and passengers must be aware that batteries are not the only dangerous good banned on an aircraft as cargo or in checked luggage. Travelers often put the safety of other passengers in danger by checking in or bringing on board banned items. Figure 4 illustrates some of these forbidden goods. The Australian Civil Aviation and Safety Authority (CASA) remind travelers to declare potentially dangerous goods. Check dangerous goods under CASA if uncertain what is allowed.
Figure 4: Banned consumer goods on an aircraft [1]
If uncertain what items are banned, check “dangerous goods” under CASA or other websites.
Mishaps remind travelers of the importance to observe safety bylaws. In 2014, the captain of a Boeing 737 aircraft declared “Mayday” after observing heavy white smoke billowing from the cargo hold of the plane during an external pre-flight inspection. Emergency crew uncovered 28 batteries in a checked transit case, 6–8 of which had been destroyed by fire. The report said that an electrical short in a battery started the fire after the passenger declared that no batteries were in the transit case. Under civil aviation laws, passengers failing to declare dangerous goods face penalties of up to 7 years in prison. Figure 5 illustrates the remains of the charred content.
Figure 5: Exploded transit case [2]
CASA examines the remains of checked luggage after a battery caught fire before take-off. The dangerous goods were not declared. Shipping of lithium-based batteries is regulated under UN 38.3.
Regulations are only as good as actual adherence to the rules. Shipment of dangerous goods can be circumvented by deliberately mislabeling batteries. There are reported cases where Li-ion was marked with NiCd, a chemistry that is not classified as dangerous goods. In other cases, lithium-metal with strictest requirements was listed as more benign Li-ion. Battery chemistries are difficult to identify and the offense may go undetected. Tightening rules only makes sense if they can be administered policed with reasonable ease; imposing rules that are too stringent will invite lawbreakers. Only purchase lithium batteries that come from a reputable company. Check that the batteries meet the UN Manual of Test and Criteria requirements.
Use Common sense when carrying Batteries
Avoid storing and transporting small batteries in a metal box. Do not carry batteries with coins and house keys in your jeans. Batteries can short circuit and release high amounts of energy, especially lithium systems. While a household alkaline may get hot when shorted, lead acid will draw high current for a few seconds, heat up and possibly spill. Lithium-ion is most treacherous especially when fully charged. An unprotected Li-ion cell or battery pack continues to draw high current that can lead to a violent self-destruction and injury through heat exposure and venting with flame.
Up-to-date information on Shipping Lithium Batteries by Air is available on 2021 Lithium Battery Guidance Document.
Disclaimer: While every effort was made to ensure that the information contained in this publication is accurate, the publisher of Battery University does not warrant or guarantee accuracy and completeness; nor does the publisher take responsibility for errors, omissions or damages that may arise from this information. These guidelines are for informative purposes only. Refer to International Air Transport Association (IATA) regulations when shipping lithium metal or lithium ion batteries or cells: Lithium Batteries.
References
[1] Source: Daily Telegraph
[2] Source: Daily Telegraph
Last Updated: 27-Oct-2021
Batteries In A Portable World
The material on Battery University is based on the indispensable new 4th edition of "Batteries in a Portable World - A Handbook on Rechargeable Batteries for Non-Engineers" which is available for order through Amazon.com.
Find An Article
Table of Contents
-
Introduction 4>
- BU-001: Sharing Battery Knowledge
- BU-002: Introduction
- BU-003: Dedication
-
Crash Course on Batteries 4>
- BU-101: When Was the Battery Invented?
- BU-102: Early Innovators
- BU-103: Global Battery Markets
- BU-103a: Battery Breakthroughs: Myth or Fact?
- BU-104: Getting to Know the Battery
- BU-104a: Comparing the Battery with Other Power Sources
- BU-104b: Battery Building Blocks
- BU-104c: The Octagon Battery – What makes a Battery a Battery
- BU-105: Battery Definitions and what they mean
- BU-106: Advantages of Primary Batteries
- BU-106a: Choices of Primary Batteries
- BU-107: Comparison Table of Secondary Batteries
-
Battery Types 4>
- BU-201: How does the Lead Acid Battery Work?
- BU-201a: Absorbent Glass Mat (AGM)
- BU-201b: Gel Lead Acid Battery
- BU-202: New Lead Acid Systems
- BU-203: Nickel-based Batteries
- BU-204: How do Lithium Batteries Work?
- BU-205: Types of Lithium-ion
- BU-206: Lithium-polymer: Substance or Hype?
- BU-208: Cycling Performance
- BU-209: How does a Supercapacitor Work?
- BU-210: How does the Fuel Cell Work?
- BU-210a: Why does Sodium-sulfur need to be heated
- BU-210b: How does the Flow Battery Work?
- BU-211: Alternate Battery Systems
- BU-212: Future Batteries
- BU-214: Summary Table of Lead-based Batteries
- BU-215: Summary Table of Nickel-based Batteries
- BU-216: Summary Table of Lithium-based Batteries
- BU-217: Summary Table of Alternate Batteries
- BU-218: Summary Table of Future Batteries
-
Packaging and Safety 4>
- BU-301: A look at Old and New Battery Packaging
- BU-301a: Types of Battery Cells
- BU-302: Series and Parallel Battery Configurations
- BU-303: Confusion with Voltages
- BU-304: Why are Protection Circuits Needed?
- BU-304a: Safety Concerns with Li-ion
- BU-304b: Making Lithium-ion Safe
- BU-304c: Battery Safety in Public
- BU-305: Building a Lithium-ion Pack
- BU-306: What is the Function of the Separator?
- BU-307: How does Electrolyte Work?
- BU-308: Availability of Lithium
- BU-309: How does Graphite Work in Li-ion?
- BU-310: How does Cobalt Work in Li-ion?
- BU-311: Battery Raw Materials
-
Charge Methods 4>
- BU-401: How do Battery Chargers Work?
- BU-401a: Fast and Ultra-fast Chargers
- BU-402: What Is C-rate?
- BU-403: Charging Lead Acid
- BU-404: What is Equalizing Charge?
- BU-405: Charging with a Power Supply
- BU-406: Battery as a Buffer
- BU-407: Charging Nickel-cadmium
- BU-408: Charging Nickel-metal-hydride
- BU-409: Charging Lithium-ion
- BU-409a: Why do Old Li-ion Batteries Take Long to Charge?
- BU-409b: Charging Lithium Iron Phosphate
- BU-410: Charging at High and Low Temperatures
- BU-411: Charging from a USB Port
- BU-412: Charging without Wires
- BU-413: Charging with Solar, Turbine
- BU-413a: How to Store Renewable Energy in a Battery
- BU-414: How do Charger Chips Work?
- BU-415: How to Charge and When to Charge?
-
Discharge Methods 4>
- BU-501: Basics about Discharging
- BU-501a: Discharge Characteristics of Li-ion
- BU-502: Discharging at High and Low Temperatures
- BU-503: Determining Power Deliver by the Ragone Plot
- BU-504: How to Verify Sufficient Battery Capacity
-
"Smart" Battery 4>
- BU-601: How does a Smart Battery Work?
- BU-602: How does a Battery Fuel Gauge Work?
- BU-603: How to Calibrate a “Smart” Battery
- BU-603a: Calibrating SMBus Batteries with Impedance Tracking
- BU-604: How to Process Data from a “Smart” Battery
- Testing and Calibrating Smart Batteries
-
From Birth to Retirement 4>
- BU-701: How to Prime Batteries
- BU-702: How to Store Batteries
- BU-703: Health Concerns with Batteries
- BU-704: How to Transport Batteries
- BU-704a: Shipping Lithium-based Batteries by Air
- BU-704b: CAUTION & Overpack Labels
- BU-704c: Class 9 Label
- BU-704d: NFPA 704 Rating
- BU-704e: Battery for Personal and Fleet Use
- BU-705: How to Recycle Batteries
- BU-705a: Battery Recycling as a Business
- BU-706: Summary of Do's and Don'ts
-
How To Prolong Battery Life 4>
-
General 4>
- BU-801: Setting Battery Performance Standards
- BU-801a: How to Rate Battery Runtime
- BU-801b: How to Define Battery Life
- BU-802: What Causes Capacity Loss?
- BU-802a: How does Rising Internal Resistance affect Performance?
- BU-802b: What does Elevated Self-discharge Do?
- BU-802c: How Low can a Battery be Discharged?
- BU-803: Can Batteries Be Restored?
- BU-803a: Cell Matching and Balancing
- BU-803b: What causes Cells to Short?
- BU-803c: Loss of Electrolyte
-
Lead Acid 4>
- BU-804: How to Prolong Lead-acid Batteries
- BU-804a: Corrosion, Shedding and Internal Short
- BU-804b: Sulfation and How to Prevent it
- BU-804c: Acid Stratification and Surface Charge
- BU-805: Additives to Boost Flooded Lead Acid
- BU-806: Tracking Battery Capacity and Resistance as part of Aging
- BU-806a: How Heat and Loading affect Battery Life
-
Nickel-based 4>
- BU-807: How to Restore Nickel-based Batteries
- BU-807a: Effect of Zapping
-
Lithium-ion 4>
- BU-808: How to Prolong Lithium-based Batteries
- BU-808a: How to Awaken a Sleeping Li-ion
- BU-808b: What Causes Li-ion to Die?
- BU-808c: Coulombic and Energy Efficiency with the Battery
- BU-809: How to Maximize Runtime
- BU-810: What Everyone Should Know About Aftermarket Batteries
- BU-811: Assuring Minimum Operational Reserve Energy (MORE)
-
Battery Testing and Monitoring 4>
- BU-901: Fundamentals in Battery Testing
- BU-901b: How to Measure the Remaining Useful Life of a Battery
- BU-902: How to Measure Internal Resistance
- BU-902a: How to Measure CCA
- BU-903: How to Measure State-of-charge
- BU-904: How to Measure Capacity
- BU-905: Testing Lead Acid Batteries
- BU-905a: Testing Starter Batteries in Vehicles
- BU-905b: Knowing when to Replace a Starter Battery
- BU-906: Testing Nickel-based Batteries
- BU-907: Testing Lithium-based Batteries
- BU-907a: Battery Rapid-test Methods
- BU-907b: Advancements in Battery Testing
- BU-907c: Cloud Analytics in Batteries
- BU-908: Battery Management System (BMS)
- BU-909: Battery Test Equipment
- BU-910: How to Repair a Battery Pack
- BU-911: How to Repair a Laptop Battery
- BU-915: Testing Battery with EIS
- BU-916: Deep Battery Diagnostics
- BU-917: In Search for Performance Transparency with Batteries
- BU-918: Battery Endurance Plan
-
Amazing Value of a Battery 4>
- BU-1001: Batteries in Industries
- BU-1002: Electric Powertrain, then and now
- BU-1002a: Hybrid Electric Vehicles and the Battery
- BU-1002b: Environmental Benefit of the Electric Powertrain
- BU-1003: Electric Vehicle (EV)
- BU-1003a: Battery Aging in an Electric Vehicle (EV)
- BU-1004: Charging an Electric Vehicle
- BU-1005: Does the Fuel Cell-powered Vehicle have a Future?
- BU-1006: Cost of Mobile and Renewable Power
- BU-1007: Net Calorific Value
- BU-1008: Working towards Sustainability
- BU-1009: Battery Paradox - Afterword
-
Information 4>
- BU-1101: Glossary
- BU-1102: Abbreviations
- BU-1103: Bibliography
- BU-1104: About the Author
- BU-1105: About Cadex (Sponsor)
- BU-1106: Author's Creed
- BU-1107: Disclaimer
- BU-1108: Copyright
-
Learning Tools 4>
- BU-1501 Battery History
- BU-1502 Basics about Batteries
- BU-1503 How to Maintain Batteries
- BU-1504 Battery Test & Analyzing Devices
- BU-1505 Short History of Cadex
-
Battery Articles 4>
- Perception of a Battery Tester
- Green Deal
- Risk Management in Batteries
- Predictive Test Methods for Starter Batteries
- Why Mobile Phone Batteries do not last as long as an EV Battery
- Battery Rapid-test Methods
- How to Charge Li-ion with a Parasitic Load
- Ultra-fast Charging
- Assuring Safety of Lithium-ion in the Workforce
- Diagnostic Battery Management
- Tweaking the Mobile Phone Battery
- Battery Test Methods
- Battery Testing and Safety
- How to Make Battery Performance Transparent
- Battery Diagnostics On-the-fly
- Making Battery State-of-health Transparent
- Batteries will eventually die, but when and how?
- Why does Pokémon Go rob so much Battery Power?
- How to Care for the Battery
- Tesla’s iPhone Moment — How the Powerwall will Change Global Energy Use
- Painting the Battery Green by giving it a Second Life
- Charging without Wires — A Solution or Laziness
- What everyone should know about Battery Chargers
- A Look at Cell Formats and how to Build a good Battery
- Battery Breakthroughs — Myth or Fact?
- Rapid-test Methods that No Longer Work
- Shipping Lithium-based Batteries by Air
- How to make Batteries more Reliable and Longer Lasting
- What causes Lithium-ion to die?
- Safety of Lithium-ion Batteries
- Recognizing Battery Capacity as the Missing Link
- Managing Batteries for Warehouse Logistics
- Caring for your Starter Battery
- Giving Batteries a Second Life
- How to Make Batteries in Medical Devices More Reliable
- Possible Solutions for the Battery Problem on the Boeing 787
- Impedance Spectroscopy Checks Battery Capacity in 15 Seconds
- How to Improve the Battery Fuel Gauge
- Examining Loading Characteristics on Primary and Secondary Batteries
-
Language Pool 4>
- BU-001: Compartir conocimiento sobre baterías
- BU-002: Introducción
- BU-003: Dedicatoria
- BU-104: Conociendo la Batería
- BU-302: Configuraciones de Baterías en Serie y Paralelo
-
Batteries in a Portable World book 4>
- Change-log of “Batteries in a Portable World,” 4th edition: Chapters 1 - 3
- Change-log of “Batteries in a Portable World,” 4th edition: Chapters 4 - 10