Memory: Myth or Fact?
During the nickel-cadmium years in the 1970s and 1980s, most battery ills were blamed on “memory.” Memory is derived from “cyclic memory,” meaning that a nickel-cadmium battery could remember how much energy was drawn on previous discharges and would not deliver more than was demanded before. On a discharge beyond regular duty, the voltage would abruptly drop as if to rebel against pending overtime. Improvements in battery technology have virtually eliminated the phenomenon of cycling memory.
Figure 1 illustrates the stages of crystalline formation that occur on a nickel-cadmium cell if overcharged and not maintained with periodic deep discharges. The first enlargement shows the cadmium plate in a normal crystal structure; the middle image demonstrates full-blown crystalline formation; and the third reveals some form of restoration.
|
|
New nickel-cadmium cell.The anode (negative electrode) is in fresh condition. Hexagonal cadmium-hydroxide crystals are about 1 micron in cross section, exposing large surface area to the electrolyte for maximum performance.
Cell with crystalline formation.Crystals have Restored cell.After a pulsed charge, the crystals are reduced to 3–5 microns, an almost 100% restoration. Exercise or recondition is needed if the pulse charge alone is not effective. |
Figure 1: Crystalline formation on nickel-cadmium cell. Crystalline formation occurs over a few months if battery is overcharged and not maintained with periodic deep discharges.
Courtesy of the US Army Electronics Command in Fort Monmouth, NJ
The modern nickel-cadmium battery is no longer affected by cyclic memory but suffers from crystalline formation.The active cadmium material is applied on the negative electrode plate, and with incorrect use a crystalline formation occurs that reduces the surface area of the active material. This lowers battery performance. In advanced stages, the sharp edges of the forming crystals can penetrate the separator, causing high self-discharge that can lead to an electrical short. The term “memory” on the modern NiCd refers to crystalline formation rather than the cycling memory of old.
When nickel-metal-hydride was introduced in the early 1990s, this chemistry was promoted as being memory-free but this claim is only partially true. NiMH is also subject to memory but to a lesser degree than NiCd. While NiMH has only the nickel plate to worry about, NiCd also includes the memory-prone cadmium negative electrode. This is a non-scientific explanation of why nickel-cadmium is more susceptible to memory than nickel-metal-hydride.
Crystalline formation occurs if a nickel-based battery is left in the charger for days or repeatedly recharged without a periodic full discharge. Since most applications fall into this user pattern, NiCd requires a periodic discharge to one volt per cell to prolong service life. A discharge/charge cycle as part of maintenance, known as exercise, should be done every one to three months.Avoid over-exercising as this wears down the battery unnecessarily.
If regular exercise is omitted for six months and longer, the crystals ingrain themselves and a full restoration with a discharge to one volt per cell may no longer be sufficient. However, a restoration is often still possible by applying a secondary discharge called “recondition.” Recondition is a slow discharge that drains the battery to a voltage cut-off point of about 0.4V/cell and lower. Tests done by the US Army indicate that a NiCd cell needs to be discharged to at least 0.6V to effectively break up the more resistant crystalline formations. During this corrective discharge, the current must be kept low to minimize cell reversal and, as discussed earlier, NiCd can tolerate a small amount of cell reversal. Figure 2 illustrates the battery voltage during a discharge to 1V/cell, followed by the secondary discharge to 0.4V/cell.
Figure 2: Exercise and recondition features of a Cadex battery analyzer
Recondition restores NiCd batteries with hard-to-remove memory. Recondition is a slow, deep dis-charge to 0.4V/cell.
Courtesy of Cadex
Recondition is most effective with healthy batteries and the remedy is also known to improve new packs. Similar to a medical treatment, however, the service should only be applied when so needed because over-use will stress the battery. Automated battery analyzers (Cadex) only apply the recondition cycle if the user-set target capacity cannot be reached.
Recondition is only effective on working batteries. Best results in recovery are possible when applying a full discharge every 1–3 months. If exercise has been withheld for 6–12 months, the capacity may not recover fully, and if it does the pack might suffer from high self-discharge caused by a marred separator. Older batteries do not restore well and many get worse with recondition. When this happens, the battery is a ripe candidate for retirement.
Results of Battery Maintenance
After the Balkan War in the 1990s, the Dutch Army began servicing its arsenal of nickel-cadmium batteries that had been used for the two-way radios. The technicians in charge wanted to know the remaining capacity and how many batteries could be restored to full service using battery analyzers (Cadex). The army knew that allowing the batteries to sit in the chargers with only two to three hours of use per day during the war was not ideal, and the tests showed that the capacity on some packs had dropped to a low 30 percent. With the recondition function, however, nine out of 10 batteries could be restored to 80 percent and higher. The army uses 80 percent as a threshold for usability. At time of service, the nickel-cadmiumbatteries were two to three years old.
To analyze the effectiveness of battery maintenance further, the US Navy carried out a study to find out how user pattern affects the life of nickel-cadmium batteries. For this, the research team responsible for the program established three battery groups. One group received charge only (no maintenance); another was periodically exercised (discharge to 1V/cell); and a third group received recondition. The 2,600 batteries studied were used for Motorola two-way radios deployed on three US aircraft carriers. Table 3 summarizes the test results, including the cost factor.
Maintenance method | Annual % of batteries requiring replacement | Annual battery cost |
Charge-and-use only Exercise Recondition | 45% 14% 5% | $40,500 $13,500 $4,500 |
Table 3: Replacement rates of nickel-cadmium batteries
Exercise and recondition prolong battery life by three- and ninefold respectively.
GTE Government Systems, the organization that conducted the test, learned that with charge-and-use the annual percentage of battery failure was 45 percent; with exercise the failure rate was reduced to 15 percent; and with recondition only 5 percent failed. The GTE report concludes that a battery analyzer featuring exercise and recondition costing US$2,500 would return the investment in less than one month on battery savings alone.
Last Updated: 5-Jul-2016
Batteries In A Portable World
The material on Battery University is based on the indispensable new 4th edition of "Batteries in a Portable World - A Handbook on Rechargeable Batteries for Non-Engineers" which is available for order through Amazon.com.
Find An Article
Table of Contents
-
Introduction 4>
- BU-001: Sharing Battery Knowledge
- BU-002: Introduction
- BU-003: Dedication
-
Crash Course on Batteries 4>
- BU-101: When Was the Battery Invented?
- BU-102: Early Innovators
- BU-103: Global Battery Markets
- BU-103a: Battery Breakthroughs: Myth or Fact?
- BU-104: Getting to Know the Battery
- BU-104a: Comparing the Battery with Other Power Sources
- BU-104b: Battery Building Blocks
- BU-104c: The Octagon Battery – What makes a Battery a Battery
- BU-105: Battery Definitions and what they mean
- BU-106: Advantages of Primary Batteries
- BU-106a: Choices of Primary Batteries
- BU-107: Comparison Table of Secondary Batteries
-
Battery Types 4>
- BU-201: How does the Lead Acid Battery Work?
- BU-201a: Absorbent Glass Mat (AGM)
- BU-201b: Gel Lead Acid Battery
- BU-202: New Lead Acid Systems
- BU-203: Nickel-based Batteries
- BU-204: How do Lithium Batteries Work?
- BU-205: Types of Lithium-ion
- BU-206: Lithium-polymer: Substance or Hype?
- BU-208: Cycling Performance
- BU-209: How does a Supercapacitor Work?
- BU-210: How does the Fuel Cell Work?
- BU-210a: Why does Sodium-sulfur need to be heated
- BU-210b: How does the Flow Battery Work?
- BU-211: Alternate Battery Systems
- BU-212: Future Batteries
- BU-214: Summary Table of Lead-based Batteries
- BU-215: Summary Table of Nickel-based Batteries
- BU-216: Summary Table of Lithium-based Batteries
- BU-217: Summary Table of Alternate Batteries
- BU-218: Summary Table of Future Batteries
-
Packaging and Safety 4>
- BU-301: A look at Old and New Battery Packaging
- BU-301a: Types of Battery Cells
- BU-302: Series and Parallel Battery Configurations
- BU-303: Confusion with Voltages
- BU-304: Why are Protection Circuits Needed?
- BU-304a: Safety Concerns with Li-ion
- BU-304b: Making Lithium-ion Safe
- BU-304c: Battery Safety in Public
- BU-305: Building a Lithium-ion Pack
- BU-306: What is the Function of the Separator?
- BU-307: How does Electrolyte Work?
- BU-308: Availability of Lithium
- BU-309: How does Graphite Work in Li-ion?
- BU-310: How does Cobalt Work in Li-ion?
- BU-311: Battery Raw Materials
-
Charge Methods 4>
- BU-401: How do Battery Chargers Work?
- BU-401a: Fast and Ultra-fast Chargers
- BU-402: What Is C-rate?
- BU-403: Charging Lead Acid
- BU-404: What is Equalizing Charge?
- BU-405: Charging with a Power Supply
- BU-406: Battery as a Buffer
- BU-407: Charging Nickel-cadmium
- BU-408: Charging Nickel-metal-hydride
- BU-409: Charging Lithium-ion
- BU-409a: Why do Old Li-ion Batteries Take Long to Charge?
- BU-409b: Charging Lithium Iron Phosphate
- BU-410: Charging at High and Low Temperatures
- BU-411: Charging from a USB Port
- BU-412: Charging without Wires
- BU-413: Charging with Solar, Turbine
- BU-413a: How to Store Renewable Energy in a Battery
- BU-414: How do Charger Chips Work?
- BU-415: How to Charge and When to Charge?
-
Discharge Methods 4>
- BU-501: Basics about Discharging
- BU-501a: Discharge Characteristics of Li-ion
- BU-502: Discharging at High and Low Temperatures
- BU-503: Determining Power Deliver by the Ragone Plot
- BU-504: How to Verify Sufficient Battery Capacity
-
"Smart" Battery 4>
- BU-601: How does a Smart Battery Work?
- BU-602: How does a Battery Fuel Gauge Work?
- BU-603: How to Calibrate a “Smart” Battery
- BU-603a: Calibrating SMBus Batteries with Impedance Tracking
- BU-604: How to Process Data from a “Smart” Battery
- Testing and Calibrating Smart Batteries
-
From Birth to Retirement 4>
- BU-701: How to Prime Batteries
- BU-702: How to Store Batteries
- BU-703: Health Concerns with Batteries
- BU-704: How to Transport Batteries
- BU-704a: Shipping Lithium-based Batteries by Air
- BU-704b: CAUTION & Overpack Labels
- BU-704c: Class 9 Label
- BU-704d: NFPA 704 Rating
- BU-704e: Battery for Personal and Fleet Use
- BU-705: How to Recycle Batteries
- BU-705a: Battery Recycling as a Business
- BU-706: Summary of Do's and Don'ts
-
How To Prolong Battery Life 4>
-
General 4>
- BU-801: Setting Battery Performance Standards
- BU-801a: How to Rate Battery Runtime
- BU-801b: How to Define Battery Life
- BU-802: What Causes Capacity Loss?
- BU-802a: How does Rising Internal Resistance affect Performance?
- BU-802b: What does Elevated Self-discharge Do?
- BU-802c: How Low can a Battery be Discharged?
- BU-803: Can Batteries Be Restored?
- BU-803a: Cell Matching and Balancing
- BU-803b: What causes Cells to Short?
- BU-803c: Loss of Electrolyte
-
Lead Acid 4>
- BU-804: How to Prolong Lead-acid Batteries
- BU-804a: Corrosion, Shedding and Internal Short
- BU-804b: Sulfation and How to Prevent it
- BU-804c: Acid Stratification and Surface Charge
- BU-805: Additives to Boost Flooded Lead Acid
- BU-806: Tracking Battery Capacity and Resistance as part of Aging
- BU-806a: How Heat and Loading affect Battery Life
-
Nickel-based 4>
- BU-807: How to Restore Nickel-based Batteries
- BU-807a: Effect of Zapping
-
Lithium-ion 4>
- BU-808: How to Prolong Lithium-based Batteries
- BU-808a: How to Awaken a Sleeping Li-ion
- BU-808b: What Causes Li-ion to Die?
- BU-808c: Coulombic and Energy Efficiency with the Battery
- BU-809: How to Maximize Runtime
- BU-810: What Everyone Should Know About Aftermarket Batteries
- BU-811: Assuring Minimum Operational Reserve Energy (MORE)
-
Battery Testing and Monitoring 4>
- BU-901: Fundamentals in Battery Testing
- BU-901b: How to Measure the Remaining Useful Life of a Battery
- BU-902: How to Measure Internal Resistance
- BU-902a: How to Measure CCA
- BU-903: How to Measure State-of-charge
- BU-904: How to Measure Capacity
- BU-905: Testing Lead Acid Batteries
- BU-905a: Testing Starter Batteries in Vehicles
- BU-905b: Knowing when to Replace a Starter Battery
- BU-906: Testing Nickel-based Batteries
- BU-907: Testing Lithium-based Batteries
- BU-907a: Battery Rapid-test Methods
- BU-907b: Advancements in Battery Testing
- BU-907c: Cloud Analytics in Batteries
- BU-908: Battery Management System (BMS)
- BU-909: Battery Test Equipment
- BU-910: How to Repair a Battery Pack
- BU-911: How to Repair a Laptop Battery
- BU-915: Testing Battery with EIS
- BU-916: Deep Battery Diagnostics
- BU-917: In Search for Performance Transparency with Batteries
- BU-918: Battery Endurance Plan
-
Amazing Value of a Battery 4>
- BU-1001: Batteries in Industries
- BU-1002: Electric Powertrain, then and now
- BU-1002a: Hybrid Electric Vehicles and the Battery
- BU-1002b: Environmental Benefit of the Electric Powertrain
- BU-1003: Electric Vehicle (EV)
- BU-1003a: Battery Aging in an Electric Vehicle (EV)
- BU-1004: Charging an Electric Vehicle
- BU-1005: Does the Fuel Cell-powered Vehicle have a Future?
- BU-1006: Cost of Mobile and Renewable Power
- BU-1007: Net Calorific Value
- BU-1008: Working towards Sustainability
- BU-1009: Battery Paradox - Afterword
-
Information 4>
- BU-1101: Glossary
- BU-1102: Abbreviations
- BU-1103: Bibliography
- BU-1104: About the Author
- BU-1105: About Cadex (Sponsor)
- BU-1106: Author's Creed
- BU-1107: Disclaimer
- BU-1108: Copyright
-
Learning Tools 4>
- BU-1501 Battery History
- BU-1502 Basics about Batteries
- BU-1503 How to Maintain Batteries
- BU-1504 Battery Test & Analyzing Devices
- BU-1505 Short History of Cadex
-
Battery Articles 4>
- Perception of a Battery Tester
- Green Deal
- Risk Management in Batteries
- Predictive Test Methods for Starter Batteries
- Why Mobile Phone Batteries do not last as long as an EV Battery
- Battery Rapid-test Methods
- How to Charge Li-ion with a Parasitic Load
- Ultra-fast Charging
- Assuring Safety of Lithium-ion in the Workforce
- Diagnostic Battery Management
- Tweaking the Mobile Phone Battery
- Battery Test Methods
- Battery Testing and Safety
- How to Make Battery Performance Transparent
- Battery Diagnostics On-the-fly
- Making Battery State-of-health Transparent
- Batteries will eventually die, but when and how?
- Why does Pokémon Go rob so much Battery Power?
- How to Care for the Battery
- Tesla’s iPhone Moment — How the Powerwall will Change Global Energy Use
- Painting the Battery Green by giving it a Second Life
- Charging without Wires — A Solution or Laziness
- What everyone should know about Battery Chargers
- A Look at Cell Formats and how to Build a good Battery
- Battery Breakthroughs — Myth or Fact?
- Rapid-test Methods that No Longer Work
- Shipping Lithium-based Batteries by Air
- How to make Batteries more Reliable and Longer Lasting
- What causes Lithium-ion to die?
- Safety of Lithium-ion Batteries
- Recognizing Battery Capacity as the Missing Link
- Managing Batteries for Warehouse Logistics
- Caring for your Starter Battery
- Giving Batteries a Second Life
- How to Make Batteries in Medical Devices More Reliable
- Possible Solutions for the Battery Problem on the Boeing 787
- Impedance Spectroscopy Checks Battery Capacity in 15 Seconds
- How to Improve the Battery Fuel Gauge
- Examining Loading Characteristics on Primary and Secondary Batteries
-
Language Pool 4>
- BU-001: Compartir conocimiento sobre baterías
- BU-002: Introducción
- BU-003: Dedicatoria
- BU-104: Conociendo la Batería
- BU-302: Configuraciones de Baterías en Serie y Paralelo
-
Batteries in a Portable World book 4>
- Change-log of “Batteries in a Portable World,” 4th edition: Chapters 1 - 3
- Change-log of “Batteries in a Portable World,” 4th edition: Chapters 4 - 10