How to Make Batteries in Medical Devices More Reliable
Batteries are critical components in medical devices. As more instruments are computerized and become mobile, systems performance and reliability depends heavily on the battery. Improvements in battery reliability are necessary, and at a recent workshop with Cadex Electronics, the US Food and Drug Administration (FDA) in Silver Spring, MD, expressed these concerns about batteries in medical devices:
Insufficient quality assurance in medical batteries
Lack of knowledge integrating batteries in medical devices
Not knowing when to replace the battery
The purpose of the workshop was to find solutions by exploring new techniques in battery diagnostics and monitoring. The FDA is scheduling additional meetings with health care professionals and device manufacturers to which Cadex will again play a supportive role. Brainstorming with specialty groups will explore battery aging and how to assess and manage this phenomenon.
A battery is a corrosive device that begins fading the moment it leaves the factory. Its stubborn and unpredictable behaviour has left many users in awkward situations. According to reports, up to 50% of system breakdowns are attributed to a battery. The Association for the Advancement of Medical Instrumentation (AAMI) has identified batteries as one of the top 10 challenges facing biomedical departments in a hospital setting. Some of this can be avoided, but even with the best of care, some packs die early and scientists don’t know why. Batteries exhibit human-like characteristics and
their state-of-health rests on genetic makeup, environmental conditions and user patterns.
The manufacturer specifies the runtime of a device with a battery performing at 100%, a capacity that only exists for a short time; most batteries in use operate at less. With time, the performance declines and the battery gets smaller in terms of energy storage. Most batteries deliver 300 to 500 discharge/ charge cycles; less on full discharges in a harsh environment.
Most batteries work well in the first year, but the confidence begins to fade in the second and third year. New packs are added and in time the battery fleet becomes a jumble of good and failing batteries. That’s when the headache begins. Unless batteries are examined regularly as part of quality assurance, the user has little knowledge on the performance of each pack.
The energy in a battery can be divided into three segments: available energy, the empty zone that can be refilled, and the unusable part, or rock content, that has become dormant and is growing. Figure 1 illustrates these three sections graphically.
Figure 1: The three segments of a battery
A battery stays at full performance for a limited time only. Device manufacturers must assure reliable operation with a battery that is less than 100 percent.
The “ready” light on a charger cannot verify battery state-of-health; it only indicates that the battery is fully charged. As the active space of a battery declines with use, the charge time also decreases. This can be compared to topping a water jug that has been filled with rocks. The shorter charge time pushes weak batteries to the forefront by being ready; they become a hidden disguise for the unsuspecting users placing much faith in the green light.
Let’s now address the concerns of the FDA and examine viable remedies.
1. Insufficient quality assurance in medical batteries
To meet the strict approval process, manufacturers pick the best battery from the pool. This satisfies the present moment but ignores tolerances in battery performances and capacity losses that develop over time. As part of routine quality check, the manufacturers may check only the voltage and internal resistance of a cell or battery; capacity, the leading health indicator is omitted, and for good reasons. Capacity assessment is complex and a measurement by a discharge/charge cycle is time prohibitive.
Electrochemical impedance spectroscopy (EIS) offers promising solutions in estimating capacity and detecting anomalies. This is of special interest to battery manufactures and a close collaboration will be necessary to examine what battery faults EIS can identify. Cadex went further and developed multi-model electrochemical impedance spectroscopy (Spectro™). Spectro ™ is able to read battery capacity non-invasively. Matrices will need to be developed for each battery type to check each cell or battery against the “golden sample.” The 15 to 30-second test makes this possible.
The FDA is a sounding board for battery failures and has noted that some implant batteries provide less than half the estimated runtime, hinting to manufacturing deficiencies. A low battery may manifest itself as fatigue in the patient. Doctors are trained to diagnose medical symptoms and are less familiar with the effect of a faded battery. There is also a case where an implant battery shorted and burned the tissues of the patient. As we depend more and more on batteries for our well-being, quality control using advanced technologies will eventually reduce risk and lower medical costs.
2. Lack of knowledge integrating batteries in medical devices
Regulatory institutions are concerned that device manufacturers do not place sufficient importance on battery aging. No uniform consumption model exists in assessing capacity; some medical devices are in constant use, others are on standby, skewing aging estimations. Environmental conditions further add to complexity. Safety during the battery life is a further concern that needs attention.
Batteries perform best at room temperature and live longest when stressed only moderately. “Smart” batteries offer a benefit by displaying the remaining charge, but fuel gauge readings can be off. To maintain accuracy, a smart battery needs regular calibration to correct the tracking error between the chemical and digital battery. A calibration should be done every three months or after 40 partial cycles. If the device applies a periodic deep discharge on its own accord, no additional calibration is required.
Even though sealed, some cells include vents to release gases that develop during use or exposure to stressful conditions. The electric toothbrush was brought up as an example where venting was ignored. The engineers specified a waterproof device, not knowing that an alkaline battery produces some gases during discharge. The accumulated gases inside a toothbrush led to an explosion that injured the user.
The modification of the Boeing B787 Dreamliner battery is another example where battery behavior was overlooked. The engineers estimated smoke events on the Li-ion battery to occur only once in 10 million flight hours, but two packs failed on new aircrafts in less than 100,000 flight hours. The mandated battery modification involves isolating individual cells to avert a chain reaction should one overheat, placing the battery in a steel container capable of withstanding a fire without damaging the surrounding areas, and adding a one-way vent to release gases from a burning battery to the outside. Designers of medical devices can learn from this experience.
3. Not knowing when to replace the battery
A battery is a consumable component that gradually loses performance over time. Unlike a car tire that can be inspected for wear and tear and replaced when the treads are low, the battery is a black box that does not change color, size or weight; it quits on its own time table. Device manufacturers must make the users aware of the symptoms of a weak battery and hint to battery replacement policies. This is not well understood in the medical industry and needs attention. When the author of this article asks users, “At what capacity do you replace the battery,” most shrug their shoulders and say, “I don’t know.”
Besides assuring sufficient energy reserve, medical device users must also plan for a worst-case scenario. Although manufacturers do include some reserve, it became apparent at the FDA meeting that this is not clearly defined. Energy reserve as part of battery aging and worst-case scenario varies by application. Critical missions need tighter requirements and such a battery might need replacement sooner than for less demanding uses where an unexpected failure can be tolerated. Figure 2 provides tolerances for fade and spare, bringing the usable battery capacity to 60% in worst-case scenario.
Figure 2: Calculating spare battery capacity
Reserve capacity must be calculated for worst-case scenario. The allowable capacity range is 80-100%; a spare capacity of 20% is recommended for critical use.
Some public safety organisations use the highest performing batteries for critical applications and pass packs with shrinking capacities to less demanding roles where replacements are on hand should a failure occur. Placing batteries into different tier levels allows economical use of batteries without sacrificing reliability. Performance evaluation based on capacity can only be done reliably with battery maintenance. Neither date-stamping nor the use of a smart battery provides reliable alternatives. (Cadex Electronics specializes in battery analyzers and management systems.)
Summary
Battery diagnostics has not advanced as quickly as other technologies, but progress is being made. Experts predict that EIS will lead the path and the results at the Cadex laboratories are promising. A growing number of hospitals and paramedics are also taking the proactive approach towards battery maintenance. Servicing a large battery fleet on automated battery analyzers takes less than one hour a day and the payback is estimated at one year on battery savings alone. Increased risk management and reducing the environmental impact of discarding batteries too early are added bonuses. Utilizing new technologies in battery management will make a noticeable change in the reliability of medical devices.
Last Updated: 26-May-2015
Batteries In A Portable World
The material on Battery University is based on the indispensable new 4th edition of "Batteries in a Portable World - A Handbook on Rechargeable Batteries for Non-Engineers" which is available for order through Amazon.com.
Find An Article
Table of Contents
-
Introduction 4>
- BU-001: Sharing Battery Knowledge
- BU-002: Introduction
- BU-003: Dedication
-
Crash Course on Batteries 4>
- BU-101: When Was the Battery Invented?
- BU-102: Early Innovators
- BU-103: Global Battery Markets
- BU-103a: Battery Breakthroughs: Myth or Fact?
- BU-104: Getting to Know the Battery
- BU-104a: Comparing the Battery with Other Power Sources
- BU-104b: Battery Building Blocks
- BU-104c: The Octagon Battery – What makes a Battery a Battery
- BU-105: Battery Definitions and what they mean
- BU-106: Advantages of Primary Batteries
- BU-106a: Choices of Primary Batteries
- BU-107: Comparison Table of Secondary Batteries
-
Battery Types 4>
- BU-201: How does the Lead Acid Battery Work?
- BU-201a: Absorbent Glass Mat (AGM)
- BU-201b: Gel Lead Acid Battery
- BU-202: New Lead Acid Systems
- BU-203: Nickel-based Batteries
- BU-204: How do Lithium Batteries Work?
- BU-205: Types of Lithium-ion
- BU-206: Lithium-polymer: Substance or Hype?
- BU-208: Cycling Performance
- BU-209: How does a Supercapacitor Work?
- BU-210: How does the Fuel Cell Work?
- BU-210a: Why does Sodium-sulfur need to be heated
- BU-210b: How does the Flow Battery Work?
- BU-211: Alternate Battery Systems
- BU-212: Future Batteries
- BU-214: Summary Table of Lead-based Batteries
- BU-215: Summary Table of Nickel-based Batteries
- BU-216: Summary Table of Lithium-based Batteries
- BU-217: Summary Table of Alternate Batteries
- BU-218: Summary Table of Future Batteries
-
Packaging and Safety 4>
- BU-301: A look at Old and New Battery Packaging
- BU-301a: Types of Battery Cells
- BU-302: Series and Parallel Battery Configurations
- BU-303: Confusion with Voltages
- BU-304: Why are Protection Circuits Needed?
- BU-304a: Safety Concerns with Li-ion
- BU-304b: Making Lithium-ion Safe
- BU-304c: Battery Safety in Public
- BU-305: Building a Lithium-ion Pack
- BU-306: What is the Function of the Separator?
- BU-307: How does Electrolyte Work?
- BU-308: Availability of Lithium
- BU-309: How does Graphite Work in Li-ion?
- BU-310: How does Cobalt Work in Li-ion?
- BU-311: Battery Raw Materials
-
Charge Methods 4>
- BU-401: How do Battery Chargers Work?
- BU-401a: Fast and Ultra-fast Chargers
- BU-402: What Is C-rate?
- BU-403: Charging Lead Acid
- BU-404: What is Equalizing Charge?
- BU-405: Charging with a Power Supply
- BU-406: Battery as a Buffer
- BU-407: Charging Nickel-cadmium
- BU-408: Charging Nickel-metal-hydride
- BU-409: Charging Lithium-ion
- BU-409a: Why do Old Li-ion Batteries Take Long to Charge?
- BU-409b: Charging Lithium Iron Phosphate
- BU-410: Charging at High and Low Temperatures
- BU-411: Charging from a USB Port
- BU-412: Charging without Wires
- BU-413: Charging with Solar, Turbine
- BU-413a: How to Store Renewable Energy in a Battery
- BU-414: How do Charger Chips Work?
- BU-415: How to Charge and When to Charge?
-
Discharge Methods 4>
- BU-501: Basics about Discharging
- BU-501a: Discharge Characteristics of Li-ion
- BU-502: Discharging at High and Low Temperatures
- BU-503: Determining Power Deliver by the Ragone Plot
- BU-504: How to Verify Sufficient Battery Capacity
-
"Smart" Battery 4>
- BU-601: How does a Smart Battery Work?
- BU-602: How does a Battery Fuel Gauge Work?
- BU-603: How to Calibrate a “Smart” Battery
- BU-603a: Calibrating SMBus Batteries with Impedance Tracking
- BU-604: How to Process Data from a “Smart” Battery
- Testing and Calibrating Smart Batteries
-
From Birth to Retirement 4>
- BU-701: How to Prime Batteries
- BU-702: How to Store Batteries
- BU-703: Health Concerns with Batteries
- BU-704: How to Transport Batteries
- BU-704a: Shipping Lithium-based Batteries by Air
- BU-704b: CAUTION & Overpack Labels
- BU-704c: Class 9 Label
- BU-704d: NFPA 704 Rating
- BU-704e: Battery for Personal and Fleet Use
- BU-705: How to Recycle Batteries
- BU-705a: Battery Recycling as a Business
- BU-706: Summary of Do's and Don'ts
-
How To Prolong Battery Life 4>
-
General 4>
- BU-801: Setting Battery Performance Standards
- BU-801a: How to Rate Battery Runtime
- BU-801b: How to Define Battery Life
- BU-802: What Causes Capacity Loss?
- BU-802a: How does Rising Internal Resistance affect Performance?
- BU-802b: What does Elevated Self-discharge Do?
- BU-802c: How Low can a Battery be Discharged?
- BU-803: Can Batteries Be Restored?
- BU-803a: Cell Matching and Balancing
- BU-803b: What causes Cells to Short?
- BU-803c: Loss of Electrolyte
-
Lead Acid 4>
- BU-804: How to Prolong Lead-acid Batteries
- BU-804a: Corrosion, Shedding and Internal Short
- BU-804b: Sulfation and How to Prevent it
- BU-804c: Acid Stratification and Surface Charge
- BU-805: Additives to Boost Flooded Lead Acid
- BU-806: Tracking Battery Capacity and Resistance as part of Aging
- BU-806a: How Heat and Loading affect Battery Life
-
Nickel-based 4>
- BU-807: How to Restore Nickel-based Batteries
- BU-807a: Effect of Zapping
-
Lithium-ion 4>
- BU-808: How to Prolong Lithium-based Batteries
- BU-808a: How to Awaken a Sleeping Li-ion
- BU-808b: What Causes Li-ion to Die?
- BU-808c: Coulombic and Energy Efficiency with the Battery
- BU-809: How to Maximize Runtime
- BU-810: What Everyone Should Know About Aftermarket Batteries
- BU-811: Assuring Minimum Operational Reserve Energy (MORE)
-
Battery Testing and Monitoring 4>
- BU-901: Fundamentals in Battery Testing
- BU-901b: How to Measure the Remaining Useful Life of a Battery
- BU-902: How to Measure Internal Resistance
- BU-902a: How to Measure CCA
- BU-903: How to Measure State-of-charge
- BU-904: How to Measure Capacity
- BU-905: Testing Lead Acid Batteries
- BU-905a: Testing Starter Batteries in Vehicles
- BU-905b: Knowing when to Replace a Starter Battery
- BU-906: Testing Nickel-based Batteries
- BU-907: Testing Lithium-based Batteries
- BU-907a: Battery Rapid-test Methods
- BU-907b: Advancements in Battery Testing
- BU-907c: Cloud Analytics in Batteries
- BU-908: Battery Management System (BMS)
- BU-909: Battery Test Equipment
- BU-910: How to Repair a Battery Pack
- BU-911: How to Repair a Laptop Battery
- BU-915: Testing Battery with EIS
- BU-916: Deep Battery Diagnostics
- BU-917: In Search for Performance Transparency with Batteries
- BU-918: Battery Endurance Plan
-
Amazing Value of a Battery 4>
- BU-1001: Batteries in Industries
- BU-1002: Electric Powertrain, then and now
- BU-1002a: Hybrid Electric Vehicles and the Battery
- BU-1002b: Environmental Benefit of the Electric Powertrain
- BU-1003: Electric Vehicle (EV)
- BU-1003a: Battery Aging in an Electric Vehicle (EV)
- BU-1004: Charging an Electric Vehicle
- BU-1005: Does the Fuel Cell-powered Vehicle have a Future?
- BU-1006: Cost of Mobile and Renewable Power
- BU-1007: Net Calorific Value
- BU-1008: Working towards Sustainability
- BU-1009: Battery Paradox - Afterword
-
Information 4>
- BU-1101: Glossary
- BU-1102: Abbreviations
- BU-1103: Bibliography
- BU-1104: About the Author
- BU-1105: About Cadex (Sponsor)
- BU-1106: Author's Creed
- BU-1107: Disclaimer
- BU-1108: Copyright
-
Learning Tools 4>
- BU-1501 Battery History
- BU-1502 Basics about Batteries
- BU-1503 How to Maintain Batteries
- BU-1504 Battery Test & Analyzing Devices
- BU-1505 Short History of Cadex
-
Battery Articles 4>
- Perception of a Battery Tester
- Green Deal
- Risk Management in Batteries
- Predictive Test Methods for Starter Batteries
- Why Mobile Phone Batteries do not last as long as an EV Battery
- Battery Rapid-test Methods
- How to Charge Li-ion with a Parasitic Load
- Ultra-fast Charging
- Assuring Safety of Lithium-ion in the Workforce
- Diagnostic Battery Management
- Tweaking the Mobile Phone Battery
- Battery Test Methods
- Battery Testing and Safety
- How to Make Battery Performance Transparent
- Battery Diagnostics On-the-fly
- Making Battery State-of-health Transparent
- Batteries will eventually die, but when and how?
- Why does Pokémon Go rob so much Battery Power?
- How to Care for the Battery
- Tesla’s iPhone Moment — How the Powerwall will Change Global Energy Use
- Painting the Battery Green by giving it a Second Life
- Charging without Wires — A Solution or Laziness
- What everyone should know about Battery Chargers
- A Look at Cell Formats and how to Build a good Battery
- Battery Breakthroughs — Myth or Fact?
- Rapid-test Methods that No Longer Work
- Shipping Lithium-based Batteries by Air
- How to make Batteries more Reliable and Longer Lasting
- What causes Lithium-ion to die?
- Safety of Lithium-ion Batteries
- Recognizing Battery Capacity as the Missing Link
- Managing Batteries for Warehouse Logistics
- Caring for your Starter Battery
- Giving Batteries a Second Life
- How to Make Batteries in Medical Devices More Reliable
- Possible Solutions for the Battery Problem on the Boeing 787
- Impedance Spectroscopy Checks Battery Capacity in 15 Seconds
- How to Improve the Battery Fuel Gauge
- Examining Loading Characteristics on Primary and Secondary Batteries
-
Language Pool 4>
- BU-001: Compartir conocimiento sobre baterías
- BU-002: Introducción
- BU-003: Dedicatoria
- BU-104: Conociendo la Batería
- BU-302: Configuraciones de Baterías en Serie y Paralelo
-
Batteries in a Portable World book 4>
- Change-log of “Batteries in a Portable World,” 4th edition: Chapters 1 - 3
- Change-log of “Batteries in a Portable World,” 4th edition: Chapters 4 - 10