Giving Batteries a Second Life
Are batteries replaced too soon or too late? The answer lays in reliability concerns, service strategies and economics. While most batteries are replaced too late, Dr. Imre Gyuk, manager of the Energy Storage Research Program at DOE, says that every year roughly one million usable lithium-ion batteries are sent in for recycling with most having a capacity of up to 80%.
Dr. Gyuk is not alone. Mobile phone providers learned that 90% of returned warranty batteries have no problem. Packs are replaced on the slightest complaint without testing; installing a new pack seldom resolves the perceived problem. In the medical industry batteries are often replaced through date-stamping regardless of condition. Some packs are hardly used and are still in excellent health. A leading battery manufacturer discovered that 200 of 400 returned starter batteries had no problem. These organizations question the reason for the returns and the test methods used.
While lead and cadmium-based batteries pose the largest environmental concerns, lithium-ion is being added to the list of pollutants for the first time. This chemistry was classified as only mildly toxic, but the sheer volume of Li-ion batteries in consumer products requires tighter scrutiny.
Ingenious entrepreneurs have discovered a business model in giving discarded batteries a second life. Refurbishment centers have sprung up in the USA, UK and Israel. A service center in Texas handles up to 700,000 mobile phone batteries per month. They purchase surplus batteries by the ton and check them with battery analyzers. Reports reveal that customers using these B-Class batteries serviced by Cadex battery analyzers have identical performance records to new packs; there are no recorded increases in returns. Figure 1 shows a box of incoming batteries to be serviced.
Figure 1: Discarded mobile phone
batteries are tested and redistributed
Modern rapid-test methods enable
quick service of incoming batteries.
Storefronts also utilize these
technologies as part of customer
service.
With the advent of the electric powertrain, more batteries are becoming available for refurbishing. Although less than at 100% capacity, these rugged industrial batteries have plenty of life left to serve less demanding applications. GM and ABB are already using Chevrolet Volt battery packs to store electrical energy for grid use. A medical technician working in a large Michigan hospital uses spent batteries from patient heart pumps to cut the grass with an electric lawn mower. This makes green energy even greener.
The leading health indicator of a battery is capacity. Capacity determines the energy a battery can hold and suggests the price on a refurbished battery. Even if faded, an otherwise healthy Li-ion battery has a higher capacity than a new lead acid. Li-ion batteries for industrial use have a specific energy of about 120Wh/kg; lead acid is only at 40Wh/kg. A Li-ion battery dropping from 100% to 60% still has 72Wh/kg, a capacity that is substantially higher than lead acid. Furthermore, Li-ion will outlive lead acid if continuously cycled in a renewable energy application.
Battery test methods
Battery diagnostics has not advanced as quickly as other technologies and still appears to dwell in medieval times. No instrument is capable of estimating the state-of-health of a battery in a single measurement. Similar to a doctor examining a patient, or the weatherman forecasting the weather, battery testing entails looking at multiple attributes to get a clear health assessment. Although capacity is the leading health indicator, internal resistance and self-discharge also play a role. Suitable test equipment, understanding batteries and intuition are essential to make a refurbishing business viable.
Rapid-testing would be most desirable, but this only works for a designated battery population for which a matrix has been developed. A matrix is a multi-dimensional lookup table against which readings are compared. Text recognition, fingerprint identification and visual imaging operate in a similar principal. Mobile phone batteries fit the bill for rapid-testing and these packs can be checked with QuickSort™.
Developed by Cadex, QuickSort™ uses electrochemical dynamic response to check the flow of ions between the cathode and anode of Li-ion. A digital load simulating a mobile phone excites the battery and the generic matrix classifies the battery into Good, Low and Poor. The test takes 30 seconds, is 90% accurate over a broad range of Li-ion systems and can be performed with a state-of-charge of 40–100%. The system does not rely on internal resistance as this would produce unreliable readings. Modern Li-ion keep low resistance with cycling, and Figure 2 illustrates this relationship.
Figure 2: Relationship between capacity and resistance as part of cycling
The resistance of modern Lithium-ion remains low while the capacity gradually drops. Resistance measurements alone do not provide reliable results.
Cadex continues research to accommodate larger packs using Time Domain and Frequency Domain methods. Time domain applies a series of pulses (as in QuickSort™) and observes the rate of recovery. A good battery has as a quick recovery; a faded one is slow. An analogy can be made with a dry felt pen that still writes but needs rest to replenish the ink. Figure 3 compares a good battery with quick recovery against a faded one that is sluggish.
Figure 3: Electrochemical dynamic response
The electrochemical dynamic response measures the ion flow between the positive and negative electrodes. A good battery has a quick recovery; a faded one is sluggish.
Frequency domain is based on electrochemical impedance spectroscopy (EIS) and involves scanning a battery with frequencies ranging from several kilohertz down to millihertz. High frequency reveals the resistive qualities of a battery, also known as bird-eye’s view, and low frequencies provide insight into unique battery characteristics, including capacity estimation with a suitable algorithm.
Evaluating batteries at sub-hertz frequencies adds to the test time. At one millihertz, a cycle takes 1,000 seconds and several data points are required to assess a battery with certainty. Clever software simulation can shorten the duration to seconds by applying prediction models.
Research laboratories have been using EIS for many years to evaluate battery characteristics, but high equipment cost, long test times and the need for trained professionals to decipher reams of data have limited this technology to laboratory environments. In spite of its complexity, battery scientists believe that advanced battery testing will evolve around this very technology.
Cadex took the EIS technology a step further and developed multi-model electrochemical impedance spectroscopy or Spectro™ for short. The handheld Spectro™ test devices developed by Cadex scan the lead acid battery with a 20-2,000 Hertz signal as if to take a landscape, but the heart of the system lays in the patented algorithm that performs 40 million transactions to calculate capacity and CCA readings in 15 seconds.
Not all batteries can be checked with rapid-test methods. For the broad population of larger batteries, Cadex recommends battery analyzers to first establish if a battery is functional or not. A final capacity reading must always be known, and the most reliable method is through a full charge and discharge cycle. This method works well for deep-cycle lead acid, as well as nickel and lithium-based batteries, but should be avoided for starter batteries.
Servicing a broad range of batteries is best done with the Cadex C7000 Series. Figure 4 illustrates the C7400ER, a programmable battery analyzer servicing lead, nickel- and lithium-based batteries with ratings of up to 36V and 6A per channel to accommodate sizes of up to 24Ah. Each of the four stations operates independently. Redundant test algorithms assure safe service of batteries with a known fault.
Figure 4: Cadex C7400ER battery analyzer
Programmable analyzers service batteries of up to 36V. Automated programs recognize a faulty battery and halt the service if necessary. The optional PC-BatteryShop™ enables PC interface.
Connecting batteries has always been a challenge and Cadex solved this with battery adapters. Frequently used batteries are best serviced with a custom adapter. Each adapter holds 10 configuration codes to service batteries of same footprint. The parameters can be edited on the analyzer or with the optional PC-BatteryShop™ software.
The Smart Cable is best suited for a broad range of diverse batteries, and the RigidArm™ (Figure 5) is most convenient for mobile phone batteries. Spring-loaded arms meet the battery contacts from the top down, allowing quick and repetitive testing. The spring-loaded retractable floor holds the battery in a vertical position and a temperature sensor monitors the battery during the test.
Figure 5: RigidArm™ for cellular batteries
Connecting small batteries is simplified with the RigidArm™. This universal battery adapter meets the contacts from the top down, allowing repetitive testing with ease.
Summary
Battery diagnostics and monitoring techniques are not advancing as rapidly as the global battery market demands. Much work lays ahead, and many companies, including Cadex, are making critical advances in the field. These incremental improvements will help extend battery life without sacrificing reliability. This is consistent with protecting our environment by being able to fully utilize the life of each battery and reducing the number of packs discarded.
Last Updated: 26-May-2015
Batteries In A Portable World
The material on Battery University is based on the indispensable new 4th edition of "Batteries in a Portable World - A Handbook on Rechargeable Batteries for Non-Engineers" which is available for order through Amazon.com.
Find An Article
Table of Contents
-
Introduction 4>
- BU-001: Sharing Battery Knowledge
- BU-002: Introduction
- BU-003: Dedication
-
Crash Course on Batteries 4>
- BU-101: When Was the Battery Invented?
- BU-102: Early Innovators
- BU-103: Global Battery Markets
- BU-103a: Battery Breakthroughs: Myth or Fact?
- BU-104: Getting to Know the Battery
- BU-104a: Comparing the Battery with Other Power Sources
- BU-104b: Battery Building Blocks
- BU-104c: The Octagon Battery – What makes a Battery a Battery
- BU-105: Battery Definitions and what they mean
- BU-106: Advantages of Primary Batteries
- BU-106a: Choices of Primary Batteries
- BU-107: Comparison Table of Secondary Batteries
-
Battery Types 4>
- BU-201: How does the Lead Acid Battery Work?
- BU-201a: Absorbent Glass Mat (AGM)
- BU-201b: Gel Lead Acid Battery
- BU-202: New Lead Acid Systems
- BU-203: Nickel-based Batteries
- BU-204: How do Lithium Batteries Work?
- BU-205: Types of Lithium-ion
- BU-206: Lithium-polymer: Substance or Hype?
- BU-208: Cycling Performance
- BU-209: How does a Supercapacitor Work?
- BU-210: How does the Fuel Cell Work?
- BU-210a: Why does Sodium-sulfur need to be heated
- BU-210b: How does the Flow Battery Work?
- BU-211: Alternate Battery Systems
- BU-212: Future Batteries
- BU-214: Summary Table of Lead-based Batteries
- BU-215: Summary Table of Nickel-based Batteries
- BU-216: Summary Table of Lithium-based Batteries
- BU-217: Summary Table of Alternate Batteries
- BU-218: Summary Table of Future Batteries
-
Packaging and Safety 4>
- BU-301: A look at Old and New Battery Packaging
- BU-301a: Types of Battery Cells
- BU-302: Series and Parallel Battery Configurations
- BU-303: Confusion with Voltages
- BU-304: Why are Protection Circuits Needed?
- BU-304a: Safety Concerns with Li-ion
- BU-304b: Making Lithium-ion Safe
- BU-304c: Battery Safety in Public
- BU-305: Building a Lithium-ion Pack
- BU-306: What is the Function of the Separator?
- BU-307: How does Electrolyte Work?
- BU-308: Availability of Lithium
- BU-309: How does Graphite Work in Li-ion?
- BU-310: How does Cobalt Work in Li-ion?
- BU-311: Battery Raw Materials
-
Charge Methods 4>
- BU-401: How do Battery Chargers Work?
- BU-401a: Fast and Ultra-fast Chargers
- BU-402: What Is C-rate?
- BU-403: Charging Lead Acid
- BU-404: What is Equalizing Charge?
- BU-405: Charging with a Power Supply
- BU-406: Battery as a Buffer
- BU-407: Charging Nickel-cadmium
- BU-408: Charging Nickel-metal-hydride
- BU-409: Charging Lithium-ion
- BU-409a: Why do Old Li-ion Batteries Take Long to Charge?
- BU-409b: Charging Lithium Iron Phosphate
- BU-410: Charging at High and Low Temperatures
- BU-411: Charging from a USB Port
- BU-412: Charging without Wires
- BU-413: Charging with Solar, Turbine
- BU-413a: How to Store Renewable Energy in a Battery
- BU-414: How do Charger Chips Work?
- BU-415: How to Charge and When to Charge?
-
Discharge Methods 4>
- BU-501: Basics about Discharging
- BU-501a: Discharge Characteristics of Li-ion
- BU-502: Discharging at High and Low Temperatures
- BU-503: Determining Power Deliver by the Ragone Plot
- BU-504: How to Verify Sufficient Battery Capacity
-
"Smart" Battery 4>
- BU-601: How does a Smart Battery Work?
- BU-602: How does a Battery Fuel Gauge Work?
- BU-603: How to Calibrate a “Smart” Battery
- BU-603a: Calibrating SMBus Batteries with Impedance Tracking
- BU-604: How to Process Data from a “Smart” Battery
- Testing and Calibrating Smart Batteries
-
From Birth to Retirement 4>
- BU-701: How to Prime Batteries
- BU-702: How to Store Batteries
- BU-703: Health Concerns with Batteries
- BU-704: How to Transport Batteries
- BU-704a: Shipping Lithium-based Batteries by Air
- BU-704b: CAUTION & Overpack Labels
- BU-704c: Class 9 Label
- BU-704d: NFPA 704 Rating
- BU-704e: Battery for Personal and Fleet Use
- BU-705: How to Recycle Batteries
- BU-705a: Battery Recycling as a Business
- BU-706: Summary of Do's and Don'ts
-
How To Prolong Battery Life 4>
-
General 4>
- BU-801: Setting Battery Performance Standards
- BU-801a: How to Rate Battery Runtime
- BU-801b: How to Define Battery Life
- BU-802: What Causes Capacity Loss?
- BU-802a: How does Rising Internal Resistance affect Performance?
- BU-802b: What does Elevated Self-discharge Do?
- BU-802c: How Low can a Battery be Discharged?
- BU-803: Can Batteries Be Restored?
- BU-803a: Cell Matching and Balancing
- BU-803b: What causes Cells to Short?
- BU-803c: Loss of Electrolyte
-
Lead Acid 4>
- BU-804: How to Prolong Lead-acid Batteries
- BU-804a: Corrosion, Shedding and Internal Short
- BU-804b: Sulfation and How to Prevent it
- BU-804c: Acid Stratification and Surface Charge
- BU-805: Additives to Boost Flooded Lead Acid
- BU-806: Tracking Battery Capacity and Resistance as part of Aging
- BU-806a: How Heat and Loading affect Battery Life
-
Nickel-based 4>
- BU-807: How to Restore Nickel-based Batteries
- BU-807a: Effect of Zapping
-
Lithium-ion 4>
- BU-808: How to Prolong Lithium-based Batteries
- BU-808a: How to Awaken a Sleeping Li-ion
- BU-808b: What Causes Li-ion to Die?
- BU-808c: Coulombic and Energy Efficiency with the Battery
- BU-809: How to Maximize Runtime
- BU-810: What Everyone Should Know About Aftermarket Batteries
- BU-811: Assuring Minimum Operational Reserve Energy (MORE)
-
Battery Testing and Monitoring 4>
- BU-901: Fundamentals in Battery Testing
- BU-901b: How to Measure the Remaining Useful Life of a Battery
- BU-902: How to Measure Internal Resistance
- BU-902a: How to Measure CCA
- BU-903: How to Measure State-of-charge
- BU-904: How to Measure Capacity
- BU-905: Testing Lead Acid Batteries
- BU-905a: Testing Starter Batteries in Vehicles
- BU-905b: Knowing when to Replace a Starter Battery
- BU-906: Testing Nickel-based Batteries
- BU-907: Testing Lithium-based Batteries
- BU-907a: Battery Rapid-test Methods
- BU-907b: Advancements in Battery Testing
- BU-907c: Cloud Analytics in Batteries
- BU-908: Battery Management System (BMS)
- BU-909: Battery Test Equipment
- BU-910: How to Repair a Battery Pack
- BU-911: How to Repair a Laptop Battery
- BU-915: Testing Battery with EIS
- BU-916: Deep Battery Diagnostics
- BU-917: In Search for Performance Transparency with Batteries
- BU-918: Battery Endurance Plan
-
Amazing Value of a Battery 4>
- BU-1001: Batteries in Industries
- BU-1002: Electric Powertrain, then and now
- BU-1002a: Hybrid Electric Vehicles and the Battery
- BU-1002b: Environmental Benefit of the Electric Powertrain
- BU-1003: Electric Vehicle (EV)
- BU-1003a: Battery Aging in an Electric Vehicle (EV)
- BU-1004: Charging an Electric Vehicle
- BU-1005: Does the Fuel Cell-powered Vehicle have a Future?
- BU-1006: Cost of Mobile and Renewable Power
- BU-1007: Net Calorific Value
- BU-1008: Working towards Sustainability
- BU-1009: Battery Paradox - Afterword
-
Information 4>
- BU-1101: Glossary
- BU-1102: Abbreviations
- BU-1103: Bibliography
- BU-1104: About the Author
- BU-1105: About Cadex (Sponsor)
- BU-1106: Author's Creed
- BU-1107: Disclaimer
- BU-1108: Copyright
-
Learning Tools 4>
- BU-1501 Battery History
- BU-1502 Basics about Batteries
- BU-1503 How to Maintain Batteries
- BU-1504 Battery Test & Analyzing Devices
- BU-1505 Short History of Cadex
-
Battery Articles 4>
- Perception of a Battery Tester
- Green Deal
- Risk Management in Batteries
- Predictive Test Methods for Starter Batteries
- Why Mobile Phone Batteries do not last as long as an EV Battery
- Battery Rapid-test Methods
- How to Charge Li-ion with a Parasitic Load
- Ultra-fast Charging
- Assuring Safety of Lithium-ion in the Workforce
- Diagnostic Battery Management
- Tweaking the Mobile Phone Battery
- Battery Test Methods
- Battery Testing and Safety
- How to Make Battery Performance Transparent
- Battery Diagnostics On-the-fly
- Making Battery State-of-health Transparent
- Batteries will eventually die, but when and how?
- Why does Pokémon Go rob so much Battery Power?
- How to Care for the Battery
- Tesla’s iPhone Moment — How the Powerwall will Change Global Energy Use
- Painting the Battery Green by giving it a Second Life
- Charging without Wires — A Solution or Laziness
- What everyone should know about Battery Chargers
- A Look at Cell Formats and how to Build a good Battery
- Battery Breakthroughs — Myth or Fact?
- Rapid-test Methods that No Longer Work
- Shipping Lithium-based Batteries by Air
- How to make Batteries more Reliable and Longer Lasting
- What causes Lithium-ion to die?
- Safety of Lithium-ion Batteries
- Recognizing Battery Capacity as the Missing Link
- Managing Batteries for Warehouse Logistics
- Caring for your Starter Battery
- Giving Batteries a Second Life
- How to Make Batteries in Medical Devices More Reliable
- Possible Solutions for the Battery Problem on the Boeing 787
- Impedance Spectroscopy Checks Battery Capacity in 15 Seconds
- How to Improve the Battery Fuel Gauge
- Examining Loading Characteristics on Primary and Secondary Batteries
-
Language Pool 4>
- BU-001: Compartir conocimiento sobre baterías
- BU-002: Introducción
- BU-003: Dedicatoria
- BU-104: Conociendo la Batería
- BU-302: Configuraciones de Baterías en Serie y Paralelo
-
Batteries in a Portable World book 4>
- Change-log of “Batteries in a Portable World,” 4th edition: Chapters 1 - 3
- Change-log of “Batteries in a Portable World,” 4th edition: Chapters 4 - 10