BU-910: How to Repair a Battery Pack
Batteries for power tools and other commercial devices can often be repaired by replacing one or all cells. Finding a NiCd and NiMH cell is relatively easy; locating an appropriate Li-ion cell is more difficult. Quality Li-ion cells are not readily available because a reputable battery manufacturer only sells to certified pack assemblers(See BU-305: Building a Lithium-ion Pack) In addition, quality Li-ion cells may only be available in high quantity, leaving smaller service enterprises in a disadvantage.
When repairing a Li-ion pack, make certain that each cell is properly reconnected to a protection circuit(See BU-304: Why are Protection Circuits Needed? and BU-304a: Safety Concerns with Li-ion) With the exception of some single-cell and power-tool packs, all Li-ion batteries must have a protection circuit; lead and nickel-based batteries are exempt.
Lead- and nickel-based batteries are more or less uniform and one can say that lead acid is lead acid and NiMH is NiMH. This cannot be uttered about the lithium-ion family as it has diverged into many unique systems and some with different voltages. While most Li-ion has a nominal cell voltage of 3.60V and charges to 4.20V, some specialty Li-ion charge to 4.10V and newer Energy Cells top at 4.35V/cell and higher. Li-phosphate presents a further exception with a nominal cell voltage of 3.20V and a charge limit of 3.65V/cell. Also unique is Li-titanate with a nominal cell voltage of 2.40V and charge limit of 2.85V(See BU-205: Types of Lithium-ion) These cells are definitely not interchangeable.
Besides different chemistries, cobalt-based Li-ion is divided into two camps: The Energy Cell provides maximum runtime at moderate load currents and regular charge time; the Power Cell offers high power and some permit shorter charge times(See BU-501: Basics About Discharging) When replacing the cells of a power tool battery, use Power Cells of identical specification to give the pack the same strength and endurance as the previous cell set. Communications devices, cameras and e-bike use the Energy Cell.
Do not go cheap on the cells and source them from an unrecognized manufacturer. Failing packs often trace to inferior cells, and this also applies with the popular 18650 Li-ion format that come in good and bad qualities. One hears repeatedly of companies that took advantage of marked-down prices from a clearing house, only to have the packs fail after 2–3 years because of high cell failure.
If a relatively new pack has only one defective cell and a replacement is located, exchanging the affected cell makes sense. With an aged battery, however, it’s best to replace all cells. Mixing new with old causes a cell mismatch that has a short life. In a well-matched battery pack all cells have similar capacities. An anomaly is a chain in which the weakest link determines the performance of the battery(See BU-302: Serial and Parallel Battery Configurations)
Cells designed for a multi-cell pack require tighter tolerances than those destined for single-cell use, such as a mobile phone. Cell manufacturers cannot fully control the capacity and hence some have higher capacities than others. In a single-cell device the average consumer does not notice such a variance. Quality cells for a multi-cell pack, on the other hand, are capacity-matched, lest they fail.
A battery shop may salvage good cells from a failed pack for reuse but the recovered cell should be checked for capacity, internal resistance and self-discharge – the three key health indicators of a battery. When checking a cell with a battery analyzer, mark the capacity so it can be matched with a pack that may need a cell of similar capacity level. Also make certain that the internal resistance is in par with a good cell and verify the self-discharge. Electro-mechanical stress often manifests itself in elevated self-discharge. To check self-discharge, fully charge the cell, measure the voltage and compare the voltage after 24 hours and perhaps a week with the voltage drop of known good cells.
Visitors of BatteryUniversity.com frequently ask: “Can NiCd can be replaced with NiMH?” In theory, this should be possible as both chemistries have the same cell voltage, but full-charge detection and trickle charge are the issues. NiMH uses a more refined charge algorithm than NiCd(See BU-408: Charging Nickel-metal-hydride) A modern NiMH charger can charge both NiMH and NiCd; the old NiCd charger could overcharge NiMH by not properly detecting the full-charge state and applying a trickle charge that is too high. Each chemistry requires its own charger.
Spot-welding a cell is the only reliable way to get dependable connection and four spot-welds per cell is the norm. Limit the heat transfer to the cells during welding to prevent damage. Insulate each cell electrically as the cell housing is “hot” and carries a voltage. If the new cell is at different charge level than the existing ones, apply a slow charge to bring them all to the same level. Observe the temperature during charge. Nickel-based cells will warm up towards the end of charge but must cool down on ready; Li-ion should stay cool during charge. The rise in temperature should be equal for all cells; unevenness hints to an anomaly.
Measure the voltage of a repaired pack and check it again after 24 hours and a few days. If a cell drops lower than another in the pack, then there is fear of elevated self-discharge(See BU-802b: Elevated Self-discharge)
Simple Guidelines when Repairing Battery Packs
Only connect cells that are matched. Do not mix cells of different chemistry, age or capacity.
Never charge or discharge Li-ion batteries unattended without a working protection circuit. Each cell must be monitored individually with a protection circuit.
Include a temperature sensor that disrupts the current should the pack get hot.
Apply a slow charge to a repaired pack to bring all cells to parity.
Pay attention when using an unknown cell brand. Elevated temperature hints to an anomaly.
Do not charge a Li-ion battery that has physical damage, has bulged or has dwelled at a voltage of less than 1.5V/cell for some time.
Check a repaired pack for self-discharge. Intrinsic defects often reveal themselves in an elevated self-discharge.
Last Updated: 4-Nov-2021
Batteries In A Portable World
The material on Battery University is based on the indispensable new 4th edition of "Batteries in a Portable World - A Handbook on Rechargeable Batteries for Non-Engineers" which is available for order through Amazon.com.
Find An Article
Table of Contents
-
Introduction 4>
- BU-001: Sharing Battery Knowledge
- BU-002: Introduction
- BU-003: Dedication
-
Crash Course on Batteries 4>
- BU-101: When Was the Battery Invented?
- BU-102: Early Innovators
- BU-103: Global Battery Markets
- BU-103a: Battery Breakthroughs: Myth or Fact?
- BU-104: Getting to Know the Battery
- BU-104a: Comparing the Battery with Other Power Sources
- BU-104b: Battery Building Blocks
- BU-104c: The Octagon Battery – What makes a Battery a Battery
- BU-105: Battery Definitions and what they mean
- BU-106: Advantages of Primary Batteries
- BU-106a: Choices of Primary Batteries
- BU-107: Comparison Table of Secondary Batteries
-
Battery Types 4>
- BU-201: How does the Lead Acid Battery Work?
- BU-201a: Absorbent Glass Mat (AGM)
- BU-201b: Gel Lead Acid Battery
- BU-202: New Lead Acid Systems
- BU-203: Nickel-based Batteries
- BU-204: How do Lithium Batteries Work?
- BU-205: Types of Lithium-ion
- BU-206: Lithium-polymer: Substance or Hype?
- BU-208: Cycling Performance
- BU-209: How does a Supercapacitor Work?
- BU-210: How does the Fuel Cell Work?
- BU-210a: Why does Sodium-sulfur need to be heated
- BU-210b: How does the Flow Battery Work?
- BU-211: Alternate Battery Systems
- BU-212: Future Batteries
- BU-214: Summary Table of Lead-based Batteries
- BU-215: Summary Table of Nickel-based Batteries
- BU-216: Summary Table of Lithium-based Batteries
- BU-217: Summary Table of Alternate Batteries
- BU-218: Summary Table of Future Batteries
-
Packaging and Safety 4>
- BU-301: A look at Old and New Battery Packaging
- BU-301a: Types of Battery Cells
- BU-302: Series and Parallel Battery Configurations
- BU-303: Confusion with Voltages
- BU-304: Why are Protection Circuits Needed?
- BU-304a: Safety Concerns with Li-ion
- BU-304b: Making Lithium-ion Safe
- BU-304c: Battery Safety in Public
- BU-305: Building a Lithium-ion Pack
- BU-306: What is the Function of the Separator?
- BU-307: How does Electrolyte Work?
- BU-308: Availability of Lithium
- BU-309: How does Graphite Work in Li-ion?
- BU-310: How does Cobalt Work in Li-ion?
- BU-311: Battery Raw Materials
-
Charge Methods 4>
- BU-401: How do Battery Chargers Work?
- BU-401a: Fast and Ultra-fast Chargers
- BU-402: What Is C-rate?
- BU-403: Charging Lead Acid
- BU-404: What is Equalizing Charge?
- BU-405: Charging with a Power Supply
- BU-406: Battery as a Buffer
- BU-407: Charging Nickel-cadmium
- BU-408: Charging Nickel-metal-hydride
- BU-409: Charging Lithium-ion
- BU-409a: Why do Old Li-ion Batteries Take Long to Charge?
- BU-409b: Charging Lithium Iron Phosphate
- BU-410: Charging at High and Low Temperatures
- BU-411: Charging from a USB Port
- BU-412: Charging without Wires
- BU-413: Charging with Solar, Turbine
- BU-413a: How to Store Renewable Energy in a Battery
- BU-414: How do Charger Chips Work?
- BU-415: How to Charge and When to Charge?
-
Discharge Methods 4>
- BU-501: Basics about Discharging
- BU-501a: Discharge Characteristics of Li-ion
- BU-502: Discharging at High and Low Temperatures
- BU-503: Determining Power Deliver by the Ragone Plot
- BU-504: How to Verify Sufficient Battery Capacity
-
"Smart" Battery 4>
- BU-601: How does a Smart Battery Work?
- BU-602: How does a Battery Fuel Gauge Work?
- BU-603: How to Calibrate a “Smart” Battery
- BU-603a: Calibrating SMBus Batteries with Impedance Tracking
- BU-604: How to Process Data from a “Smart” Battery
- Testing and Calibrating Smart Batteries
-
From Birth to Retirement 4>
- BU-701: How to Prime Batteries
- BU-702: How to Store Batteries
- BU-703: Health Concerns with Batteries
- BU-704: How to Transport Batteries
- BU-704a: Shipping Lithium-based Batteries by Air
- BU-704b: CAUTION & Overpack Labels
- BU-704c: Class 9 Label
- BU-704d: NFPA 704 Rating
- BU-704e: Battery for Personal and Fleet Use
- BU-705: How to Recycle Batteries
- BU-705a: Battery Recycling as a Business
- BU-706: Summary of Do's and Don'ts
-
How To Prolong Battery Life 4>
-
General 4>
- BU-801: Setting Battery Performance Standards
- BU-801a: How to Rate Battery Runtime
- BU-801b: How to Define Battery Life
- BU-802: What Causes Capacity Loss?
- BU-802a: How does Rising Internal Resistance affect Performance?
- BU-802b: What does Elevated Self-discharge Do?
- BU-802c: How Low can a Battery be Discharged?
- BU-803: Can Batteries Be Restored?
- BU-803a: Cell Matching and Balancing
- BU-803b: What causes Cells to Short?
- BU-803c: Loss of Electrolyte
-
Lead Acid 4>
- BU-804: How to Prolong Lead-acid Batteries
- BU-804a: Corrosion, Shedding and Internal Short
- BU-804b: Sulfation and How to Prevent it
- BU-804c: Acid Stratification and Surface Charge
- BU-805: Additives to Boost Flooded Lead Acid
- BU-806: Tracking Battery Capacity and Resistance as part of Aging
- BU-806a: How Heat and Loading affect Battery Life
-
Nickel-based 4>
- BU-807: How to Restore Nickel-based Batteries
- BU-807a: Effect of Zapping
-
Lithium-ion 4>
- BU-808: How to Prolong Lithium-based Batteries
- BU-808a: How to Awaken a Sleeping Li-ion
- BU-808b: What Causes Li-ion to Die?
- BU-808c: Coulombic and Energy Efficiency with the Battery
- BU-809: How to Maximize Runtime
- BU-810: What Everyone Should Know About Aftermarket Batteries
- BU-811: Assuring Minimum Operational Reserve Energy (MORE)
-
Battery Testing and Monitoring 4>
- BU-901: Fundamentals in Battery Testing
- BU-901b: How to Measure the Remaining Useful Life of a Battery
- BU-902: How to Measure Internal Resistance
- BU-902a: How to Measure CCA
- BU-903: How to Measure State-of-charge
- BU-904: How to Measure Capacity
- BU-905: Testing Lead Acid Batteries
- BU-905a: Testing Starter Batteries in Vehicles
- BU-905b: Knowing when to Replace a Starter Battery
- BU-906: Testing Nickel-based Batteries
- BU-907: Testing Lithium-based Batteries
- BU-907a: Battery Rapid-test Methods
- BU-907b: Advancements in Battery Testing
- BU-907c: Cloud Analytics in Batteries
- BU-908: Battery Management System (BMS)
- BU-909: Battery Test Equipment
- BU-910: How to Repair a Battery Pack
- BU-911: How to Repair a Laptop Battery
- BU-915: Testing Battery with EIS
- BU-916: Deep Battery Diagnostics
- BU-917: In Search for Performance Transparency with Batteries
- BU-918: Battery Endurance Plan
-
Amazing Value of a Battery 4>
- BU-1001: Batteries in Industries
- BU-1002: Electric Powertrain, then and now
- BU-1002a: Hybrid Electric Vehicles and the Battery
- BU-1002b: Environmental Benefit of the Electric Powertrain
- BU-1003: Electric Vehicle (EV)
- BU-1003a: Battery Aging in an Electric Vehicle (EV)
- BU-1004: Charging an Electric Vehicle
- BU-1005: Does the Fuel Cell-powered Vehicle have a Future?
- BU-1006: Cost of Mobile and Renewable Power
- BU-1007: Net Calorific Value
- BU-1008: Working towards Sustainability
- BU-1009: Battery Paradox - Afterword
-
Information 4>
- BU-1101: Glossary
- BU-1102: Abbreviations
- BU-1103: Bibliography
- BU-1104: About the Author
- BU-1105: About Cadex (Sponsor)
- BU-1106: Author's Creed
- BU-1107: Disclaimer
- BU-1108: Copyright
-
Learning Tools 4>
- BU-1501 Battery History
- BU-1502 Basics about Batteries
- BU-1503 How to Maintain Batteries
- BU-1504 Battery Test & Analyzing Devices
- BU-1505 Short History of Cadex
-
Battery Articles 4>
- Perception of a Battery Tester
- Green Deal
- Risk Management in Batteries
- Predictive Test Methods for Starter Batteries
- Why Mobile Phone Batteries do not last as long as an EV Battery
- Battery Rapid-test Methods
- How to Charge Li-ion with a Parasitic Load
- Ultra-fast Charging
- Assuring Safety of Lithium-ion in the Workforce
- Diagnostic Battery Management
- Tweaking the Mobile Phone Battery
- Battery Test Methods
- Battery Testing and Safety
- How to Make Battery Performance Transparent
- Battery Diagnostics On-the-fly
- Making Battery State-of-health Transparent
- Batteries will eventually die, but when and how?
- Why does Pokémon Go rob so much Battery Power?
- How to Care for the Battery
- Tesla’s iPhone Moment — How the Powerwall will Change Global Energy Use
- Painting the Battery Green by giving it a Second Life
- Charging without Wires — A Solution or Laziness
- What everyone should know about Battery Chargers
- A Look at Cell Formats and how to Build a good Battery
- Battery Breakthroughs — Myth or Fact?
- Rapid-test Methods that No Longer Work
- Shipping Lithium-based Batteries by Air
- How to make Batteries more Reliable and Longer Lasting
- What causes Lithium-ion to die?
- Safety of Lithium-ion Batteries
- Recognizing Battery Capacity as the Missing Link
- Managing Batteries for Warehouse Logistics
- Caring for your Starter Battery
- Giving Batteries a Second Life
- How to Make Batteries in Medical Devices More Reliable
- Possible Solutions for the Battery Problem on the Boeing 787
- Impedance Spectroscopy Checks Battery Capacity in 15 Seconds
- How to Improve the Battery Fuel Gauge
- Examining Loading Characteristics on Primary and Secondary Batteries
-
Language Pool 4>
- BU-001: Compartir conocimiento sobre baterías
- BU-002: Introducción
- BU-003: Dedicatoria
- BU-104: Conociendo la Batería
- BU-302: Configuraciones de Baterías en Serie y Paralelo
-
Batteries in a Portable World book 4>
- Change-log of “Batteries in a Portable World,” 4th edition: Chapters 1 - 3
- Change-log of “Batteries in a Portable World,” 4th edition: Chapters 4 - 10