BU-905: Testing Lead Acid Batteries
There are no shortages of battery testers, but most lack accuracy. Capacity, the leading health indicator of a battery, is difficult to obtain on the fly. Stating that a battery tester measuring internal resistance will also provide capacity estimation is misleading. Advertising features that are outside the equipment’s capabilities confuses the industry into believing that complex tests can be done with basic methods. Resistance-based instruments can identify a dying or dead battery — so does the user. Vendors often overstate the ability of battery testers knowingly. This is similar to promoting a shampoo that promises to grow lush hair on a man’s bald head.
Without reliable test devices on hand, battery testing becomes guesswork, resulting in good packs being replaced too soon and passing weak ones, only to have them fail on the road soon after checking. Lack of accurate battery testing also causes unnecessary replacements under the battery warranty program. Examining warranty returns reveals that less than 10 percent of these batteries have a manufacturing fault. Most faults are user-inflicted.
The challenge arises when assessing a battery as part of routine service before performance degradations are noticeable. Such a test is only effective when including capacity measurement. Capacity oversees the energy storage, governs the runtime and predicts the end-of-life. Internal resistance, on the other hand, is responsible for the power to crank the engine and deliver high current under load on demand. A snapshot taken with a CCA tester on a starter battery refers to the resistive battery condition only. Better electrolytes and corrosion-resistant electrode materials are keeping the resistance on modern batteries low through most of their life. Failure due to elevated resistance has become rare and may only develop at the end-of-life(See BU:901: Fundamentals of Battery Testing)
Unlike voltage, current and ohmic measurements, no universal instrument exists that can read the capacity of every battery that comes along. There are three common testing concepts: Scalar, vector and EIS with complex modeling (Spectro™).
Scalar is the simplest of the three. It takes a battery reading and compares it with a reference that is often a resistive value. Most single-frequency AC conductance testers measuring CCA are based on the scalar concept.
The vector method applies signals of different currents or it excites the battery with varied frequencies, and then evaluates the results against preset vector points to study the battery under various stress conditions. This adds complexity and the added benefits are marginal.
Spectro™ scans the battery with a frequency spectrum, as if to capture the topography of a landscape, and compares the imprint with a matrix to estimate battery capacity, CCA and SoC. Spectro™ promises the most in-depth battery analysis, but it is also the most complex(See also BU-904: How to Measure Capacity). Table 1 summarizes the three battery test methods.
| Type | Excitation | Applications | Results |
|---|---|---|---|
| Scalar | Single reference point; pulses or single-frequency excitation | Automotive, stationary; simple, commonly used | Voltage, CCA, internal resistance, no capacity |
| Vector | Multiple frequencies, currents; compares against vector | Automotive, stationary; less commonly used | As above. More complex with marginal gain |
| Spectro™ | Combines EIS with complex modeling; fuses data to derive at capacity, CCA, SoC | Lead- and lithium-based batteries | Provides CCA, capacity and SoC with appropriate matrices |
Table 1: Methods of data collection for battery rapid-testing
The table compares scalar, vector and Spectro™ which combines electrochemical impedance spectroscopy (EIS) with complex modelling.
Matrix
A matrix is a multi-dimensional look-up table against which readings are compared. Text recognition, fingerprint identification and visual imaging operate on a similar principle. In battery analysis, matrices are primarily used to estimate capacity; however, CCA and state-of-charge also benefit from using a matrix.
Spectro™ correctly predicts 8 out of 10 batteries on capacity and 9 out of 10 on CCA. Combining these two classifications provides significant improvement in test accuracies over units measuring only CCA. Most resistance-based testers deliver state-of-health predictions that are not much better than 5 correct in 10, results that can be compared with tossing a coin. Many service technicians are unaware of the low prediction rate as lab verifications are seldom done.
There is a desire for higher accuracies, but a battery can only be diagnosed if measurable symptoms are present. While packs pulled from the field give the most reliable results, outliers often lack formatting or had been in prolonged storage. To also test these batteries with certainty, matrices can be developed that include the anomalies.
State-of-charge also plays an important role, and the tester must distinguish between low charge and low capacity. Both conditions lower battery performance and are difficult to identify. Most battery testers work down to 70 percent SoC; Spectro™ goes down to 60 percent.
Creating a matrix involves scanning many batteries at different state-of-health levels. The more batteries included in the mix that are the same model but have different capacity losses, the stronger the matrix will become. A well-developed matrix should include naturally-aged battery samples with capacities ranging from 50 to 100 percent. An analogy is a bridge with many pillars to eliminate weak spots.
The population should also include batteries from hot and cold climates and different uses. For example, an aging starter battery in a Las Vegas taxi will show different symptoms than the battery in grandma’s car in northern Germany used only to take her grandchildren for a ride.
Obtaining faded batteries is difficult. Forced aging by cycling in an environmental chamber is of some help, but age-related stresses are not presented accurately and the learned symptoms can fool the system. This is especially visible with Li-ion batteries. Although the capacity is down, the Nyquist plot does not follow the signature of natural aging as part of daily usage(See BU-907: Testing Lithium-based Batteries)
A generic matrix is most practical as it serves a group of batteries. Generic matrices for the Spectro™ system are available for most car batteries; the user simply enters the capacity and CCA ratings. Instead of a numeric readout, the generic matrix provides pass/fail classification based on a capacity threshold. This solution is acceptable for most service personnel as the instrument makes the decision, eliminating uncertainties and customer interference.
Summary
A battery must undergo multiple checks, the way a medical doctor examines a patient with several tests to find the diagnosis. A serious illness could escape the doctor’s watchful eyes if only blood pressure or temperature were taken. While medical staff is well trained to evaluate the data points taken, most battery personnel do not have the same knowledge and only want to know if the battery is dead or alive. Nor are battery test devices capable of providing a detailed diagnosis of all battery ills. The battery user must be reminded that a battery tester is not a universal test tool but an estimation device that works for a designated battery population.
Last Updated: 4-Nov-2021
Batteries In A Portable World
The material on Battery University is based on the indispensable new 4th edition of "Batteries in a Portable World - A Handbook on Rechargeable Batteries for Non-Engineers" which is available for order through Amazon.com.
Find An Article
Table of Contents
-
Introduction 4>
- BU-001: Sharing Battery Knowledge
- BU-002: Introduction
- BU-003: Dedication
-
Crash Course on Batteries 4>
- BU-101: When Was the Battery Invented?
- BU-102: Early Innovators
- BU-103: Global Battery Markets
- BU-103a: Battery Breakthroughs: Myth or Fact?
- BU-104: Getting to Know the Battery
- BU-104a: Comparing the Battery with Other Power Sources
- BU-104b: Battery Building Blocks
- BU-104c: The Octagon Battery – What makes a Battery a Battery
- BU-105: Battery Definitions and what they mean
- BU-106: Advantages of Primary Batteries
- BU-106a: Choices of Primary Batteries
- BU-107: Comparison Table of Secondary Batteries
-
Battery Types 4>
- BU-201: How does the Lead Acid Battery Work?
- BU-201a: Absorbent Glass Mat (AGM)
- BU-201b: Gel Lead Acid Battery
- BU-202: New Lead Acid Systems
- BU-203: Nickel-based Batteries
- BU-204: How do Lithium Batteries Work?
- BU-205: Types of Lithium-ion
- BU-206: Lithium-polymer: Substance or Hype?
- BU-208: Cycling Performance
- BU-209: How does a Supercapacitor Work?
- BU-210: How does the Fuel Cell Work?
- BU-210a: Why does Sodium-sulfur need to be heated
- BU-210b: How does the Flow Battery Work?
- BU-211: Alternate Battery Systems
- BU-212: Future Batteries
- BU-214: Summary Table of Lead-based Batteries
- BU-215: Summary Table of Nickel-based Batteries
- BU-216: Summary Table of Lithium-based Batteries
- BU-217: Summary Table of Alternate Batteries
- BU-218: Summary Table of Future Batteries
-
Packaging and Safety 4>
- BU-301: A look at Old and New Battery Packaging
- BU-301a: Types of Battery Cells
- BU-302: Series and Parallel Battery Configurations
- BU-303: Confusion with Voltages
- BU-304: Why are Protection Circuits Needed?
- BU-304a: Safety Concerns with Li-ion
- BU-304b: Making Lithium-ion Safe
- BU-304c: Battery Safety in Public
- BU-305: Building a Lithium-ion Pack
- BU-306: What is the Function of the Separator?
- BU-307: How does Electrolyte Work?
- BU-308: Availability of Lithium
- BU-309: How does Graphite Work in Li-ion?
- BU-310: How does Cobalt Work in Li-ion?
- BU-311: Battery Raw Materials
-
Charge Methods 4>
- BU-401: How do Battery Chargers Work?
- BU-401a: Fast and Ultra-fast Chargers
- BU-402: What Is C-rate?
- BU-403: Charging Lead Acid
- BU-404: What is Equalizing Charge?
- BU-405: Charging with a Power Supply
- BU-406: Battery as a Buffer
- BU-407: Charging Nickel-cadmium
- BU-408: Charging Nickel-metal-hydride
- BU-409: Charging Lithium-ion
- BU-409a: Why do Old Li-ion Batteries Take Long to Charge?
- BU-409b: Charging Lithium Iron Phosphate
- BU-410: Charging at High and Low Temperatures
- BU-411: Charging from a USB Port
- BU-412: Charging without Wires
- BU-413: Charging with Solar, Turbine
- BU-413a: How to Store Renewable Energy in a Battery
- BU-414: How do Charger Chips Work?
- BU-415: How to Charge and When to Charge?
-
Discharge Methods 4>
- BU-501: Basics about Discharging
- BU-501a: Discharge Characteristics of Li-ion
- BU-502: Discharging at High and Low Temperatures
- BU-503: Determining Power Deliver by the Ragone Plot
- BU-504: How to Verify Sufficient Battery Capacity
-
"Smart" Battery 4>
- BU-601: How does a Smart Battery Work?
- BU-602: How does a Battery Fuel Gauge Work?
- BU-603: How to Calibrate a “Smart” Battery
- BU-603a: Calibrating SMBus Batteries with Impedance Tracking
- BU-604: How to Process Data from a “Smart” Battery
- Testing and Calibrating Smart Batteries
-
From Birth to Retirement 4>
- BU-701: How to Prime Batteries
- BU-702: How to Store Batteries
- BU-703: Health Concerns with Batteries
- BU-704: How to Transport Batteries
- BU-704a: Shipping Lithium-based Batteries by Air
- BU-704b: CAUTION & Overpack Labels
- BU-704c: Class 9 Label
- BU-704d: NFPA 704 Rating
- BU-704e: Battery for Personal and Fleet Use
- BU-705: How to Recycle Batteries
- BU-705a: Battery Recycling as a Business
- BU-706: Summary of Do's and Don'ts
-
How To Prolong Battery Life 4>
-
General 4>
- BU-801: Setting Battery Performance Standards
- BU-801a: How to Rate Battery Runtime
- BU-801b: How to Define Battery Life
- BU-802: What Causes Capacity Loss?
- BU-802a: How does Rising Internal Resistance affect Performance?
- BU-802b: What does Elevated Self-discharge Do?
- BU-802c: How Low can a Battery be Discharged?
- BU-803: Can Batteries Be Restored?
- BU-803a: Cell Matching and Balancing
- BU-803b: What causes Cells to Short?
- BU-803c: Loss of Electrolyte
-
Lead Acid 4>
- BU-804: How to Prolong Lead-acid Batteries
- BU-804a: Corrosion, Shedding and Internal Short
- BU-804b: Sulfation and How to Prevent it
- BU-804c: Acid Stratification and Surface Charge
- BU-805: Additives to Boost Flooded Lead Acid
- BU-806: Tracking Battery Capacity and Resistance as part of Aging
- BU-806a: How Heat and Loading affect Battery Life
-
Nickel-based 4>
- BU-807: How to Restore Nickel-based Batteries
- BU-807a: Effect of Zapping
-
Lithium-ion 4>
- BU-808: How to Prolong Lithium-based Batteries
- BU-808a: How to Awaken a Sleeping Li-ion
- BU-808b: What Causes Li-ion to Die?
- BU-808c: Coulombic and Energy Efficiency with the Battery
- BU-809: How to Maximize Runtime
- BU-810: What Everyone Should Know About Aftermarket Batteries
- BU-811: Assuring Minimum Operational Reserve Energy (MORE)
-
Battery Testing and Monitoring 4>
- BU-901: Fundamentals in Battery Testing
- BU-901b: How to Measure the Remaining Useful Life of a Battery
- BU-902: How to Measure Internal Resistance
- BU-902a: How to Measure CCA
- BU-903: How to Measure State-of-charge
- BU-904: How to Measure Capacity
- BU-905: Testing Lead Acid Batteries
- BU-905a: Testing Starter Batteries in Vehicles
- BU-905b: Knowing when to Replace a Starter Battery
- BU-906: Testing Nickel-based Batteries
- BU-907: Testing Lithium-based Batteries
- BU-907a: Battery Rapid-test Methods
- BU-907b: Advancements in Battery Testing
- BU-907c: Cloud Analytics in Batteries
- BU-908: Battery Management System (BMS)
- BU-909: Battery Test Equipment
- BU-910: How to Repair a Battery Pack
- BU-911: How to Repair a Laptop Battery
- BU-915: Testing Battery with EIS
- BU-916: Deep Battery Diagnostics
- BU-917: In Search for Performance Transparency with Batteries
- BU-918: Battery Endurance Plan
-
Amazing Value of a Battery 4>
- BU-1001: Batteries in Industries
- BU-1002: Electric Powertrain, then and now
- BU-1002a: Hybrid Electric Vehicles and the Battery
- BU-1002b: Environmental Benefit of the Electric Powertrain
- BU-1003: Electric Vehicle (EV)
- BU-1003a: Battery Aging in an Electric Vehicle (EV)
- BU-1004: Charging an Electric Vehicle
- BU-1005: Does the Fuel Cell-powered Vehicle have a Future?
- BU-1006: Cost of Mobile and Renewable Power
- BU-1007: Net Calorific Value
- BU-1008: Working towards Sustainability
- BU-1009: Battery Paradox - Afterword
-
Information 4>
- BU-1101: Glossary
- BU-1102: Abbreviations
- BU-1103: Bibliography
- BU-1104: About the Author
- BU-1105: About Cadex (Sponsor)
- BU-1106: Author's Creed
- BU-1107: Disclaimer
- BU-1108: Copyright
-
Learning Tools 4>
- BU-1501 Battery History
- BU-1502 Basics about Batteries
- BU-1503 How to Maintain Batteries
- BU-1504 Battery Test & Analyzing Devices
- BU-1505 Short History of Cadex
-
Battery Articles 4>
- Perception of a Battery Tester
- Green Deal
- Risk Management in Batteries
- Predictive Test Methods for Starter Batteries
- Why Mobile Phone Batteries do not last as long as an EV Battery
- Battery Rapid-test Methods
- How to Charge Li-ion with a Parasitic Load
- Ultra-fast Charging
- Assuring Safety of Lithium-ion in the Workforce
- Diagnostic Battery Management
- Tweaking the Mobile Phone Battery
- Battery Test Methods
- Battery Testing and Safety
- How to Make Battery Performance Transparent
- Battery Diagnostics On-the-fly
- Making Battery State-of-health Transparent
- Batteries will eventually die, but when and how?
- Why does Pokémon Go rob so much Battery Power?
- How to Care for the Battery
- Tesla’s iPhone Moment — How the Powerwall will Change Global Energy Use
- Painting the Battery Green by giving it a Second Life
- Charging without Wires — A Solution or Laziness
- What everyone should know about Battery Chargers
- A Look at Cell Formats and how to Build a good Battery
- Battery Breakthroughs — Myth or Fact?
- Rapid-test Methods that No Longer Work
- Shipping Lithium-based Batteries by Air
- How to make Batteries more Reliable and Longer Lasting
- What causes Lithium-ion to die?
- Safety of Lithium-ion Batteries
- Recognizing Battery Capacity as the Missing Link
- Managing Batteries for Warehouse Logistics
- Caring for your Starter Battery
- Giving Batteries a Second Life
- How to Make Batteries in Medical Devices More Reliable
- Possible Solutions for the Battery Problem on the Boeing 787
- Impedance Spectroscopy Checks Battery Capacity in 15 Seconds
- How to Improve the Battery Fuel Gauge
- Examining Loading Characteristics on Primary and Secondary Batteries
-
Language Pool 4>
- BU-001: Compartir conocimiento sobre baterías
- BU-002: Introducción
- BU-003: Dedicatoria
- BU-104: Conociendo la Batería
- BU-302: Configuraciones de Baterías en Serie y Paralelo
-
Batteries in a Portable World book 4>
- Change-log of “Batteries in a Portable World,” 4th edition: Chapters 1 - 3
- Change-log of “Batteries in a Portable World,” 4th edition: Chapters 4 - 10