BU-901: Fundamentals in Battery Testing
No practical method exists to quantify all conditions of a battery in a short, comprehensive test. State-of-health (SoH) cannot be measured per se, it can only be estimated to various degrees of accuracy based on available symptoms. If the symptoms are vague or not present, a reliable measurement is not possible. When testing a battery, three SoH indicators must be evaluated:
Capacity, the ability to store energy
Internal resistance, the capability to deliver current, and
Self-discharge, reflecting mechanical integrity and stress-related conditions
Batteries come in many conditions and a charge can easily mask a symptom allowing a weak battery to perform well. Likewise, a strong battery with low charge shares similarities with a pack that exhibits capacity loss. Battery characteristics are also swayed by a recent charge, discharge or long storage. These mood swings must be clearly identified when testing batteries.
Figure 1 demonstrates the usable battery capacity in volume that can be filled with a liquid, permanent capacity loss in the form of “rock content” that reduces the volume, and internal resistance in tap size symbolizing current flow
Figure 1: Conceptual battery [1]
symbolizing the usable capacity, the empty portion that can be refilled, permanent capacity loss as “rock content” and the tap symbolizing power delivery as part of internal resistance.
The leading health indicator of a battery is capacity, a measurement that represents energy storage. A new battery should deliver 100 percent of the rated capacity. This means a 5Ah pack should deliver five amperes for 1 hour. If the battery quits after 30 minutes, then the capacity is only 50 percent. Capacity also supports warranty obligations with a replacement due when falling below 80 percent. Most importantly, capacity defines end of battery life.
Lead acid starts at about 85 percent and increases in capacity through use before the long and gradual decrease begins(See BU-701: How to Prime Batteries) Lithium-ion starts at peak and begins its decline immediately, albeit very slowly. Nickel-based batteries need priming to reach full capacity when new or after a long storage.
Manufacturers base device specifications on a new battery. This state is temporary and does not represent a battery in real-life situations because fading begins from the day it is made. The decrease in performance only becomes visible once the shine of a new device has worn off and daily routines are being taken for granted. An analogy is an aging man whose endurance begins to wear off after the most productive years (Figure 2)
Figure 2: Battery can be likened to a man growing old
Few people know when to replace a battery; some are replaced too early but most are kept too long.
Knowing when to replace a battery is a blur for many battery users. When asked, “At what capacity do you replace the battery?” most reply in confusion, “I beg your pardon?” Few are familiar with the term capacity as a measurement of runtime, and fewer know that capacity is used as a threshold for retiring batteries. In many organizations, battery problems only become apparent with increased breakdowns, which may be caused by a lack of battery maintenance.
Battery retirement depends on the application. Organizations using battery analyzers typically set the replacement threshold at 80 percent(See BU-909: Battery Test Equipment) Some industries can keep the battery longer than others and a toss arises between “what if” and economics. Scanning devices in warehouses may go as low as 60 percent and still provide a full day’s work. A starter battery in a car still cranks well at 40 percent, but that is cutting it thin.
Any battery-operated mission must plan for a worst-case scenario. Although manufacturers include some reserve when specifying runtime, the amount is seldom clearly defined. Critical missions demand tighter tolerances and the battery must be replaced sooner than when a sudden failure can be tolerated(See BU-503: How to Calculate Battery Runtime)
Medical and military devices are considered critical and batteries are often replaced too soon. Rather than testing them, device manufacturers prefer to use a cycle count or a date stamp to mandate retirement. To cover all eventualities, the service duration on a date stamp is often limited to 2 or 3 years.
Medical technicians have discovered that many batteries for defibrillators have more than 90 percent capacity left when the mandatory 2-year date-stamp expires, replacing perfectly good medical batteries prematurely. In spite of this apparent waste, a US FDA survey says that “up to 50 percent of service calls in hospitals surveyed relate to battery issues.” Healthcare professionals at AAMI (Association for the Advancement of Medical Instruments) say further that “battery management emerged as a top 10 medical device challenge.”(See BU:803: Can batteries be Restored)
Another application where battery capacity is important is in a drone. With a good battery, the device may be specified to fly for 60 minutes, but if unknown to mission control, the capacity has dropped from 100 to 75 percent, the flying time is reduced to 45 minutes. This could crash the $25,000 vehicle when required to negotiate a second landing approach. By marking the capacity on each pack as part of battery maintenance, batteries delivering close to 100 percent capacity can be assigned for long hauls while older packs may be sent for shorter errands. This allows the full use of each battery and establishes a sound retirement policy.
Many batteries and portable devices include a fuel gauge that shows the remaining energy. A full charge always shows 100 percent, whether the battery is new or faded. This creates a false sense of security by anticipating that a faded battery showing fully charge will deliver the same runtime as a new one. Batteries with fuel gauges only indicate SoC and not the capacity.
Battery failure is not only limited to portable devices. Starter batteries in vehicles have also become failure-prone. In 2008, ADAC (Allgemeiner Deutscher Automobil-Club e.V.) stated that 40 percent of all roadside automotive failures are battery-related. A 2013 ADAC report says that battery problems have quadrupled between 1996 and 2010.
ADAC, Europe’s largest automotive club, says further that each third breakdown involves either a discharged or defective battery. The report, published by German Motorwelt in May 2013, also mentions that only a few starter batteries reach the average age of five years, and this applies to all cars. The statistic was derived from the more than four million breakdowns that the ADAC car club typically receives in a year. The study only included newer cars; service-prone vehicles more than 6 years old were excluded.
BCI (Battery Council International) reports similar results. A 2010 study by the BCI technical subcommittee revealed that grid-related failures had increased by 9 percent from 5 years earlier. Experts suspect that higher electrical demands in modern vehicles lead to higher failure rates(See BU-804: How to Prolong Lead-acid Batteries)
Battery failure in Japan is the largest single complaint among new car owners. The average car is driven 13km (8 miles) per day and mostly in congested cities. The most common reason for battery failure is undercharge, developing sulfation. (See BU-804b: Sulfation and How to Prevent it.) Battery performance is key; problems during the warranty period are recorded as component failure and tarnish customer satisfaction.
A German manufacturer of luxury cars reported that one in two starter batteries returned under warranty had no problem. A German manufacturer of high-quality starter batteries stated that factory defects account for only 5 to 7 percent of all warranty claims. Battery failure during the warranty period is seldom a factory defect; driving habits are the main culprits. A careful assessment with advanced battery test instruments capable of looking at various failure symptoms can greatly reduce warranty claims.
The mobile phone industry experiences similar battery warranty issues. Nine out of ten batteries returned are said to have no problems. Rather than trouble-shooting a customer complaint because of lower than expected runtime, the clerk simply replaces the battery. This burdens the vendor without solving the problem; it may also lead to repeat complaints.
Dilemma of Battery Testing
Part of the problem lies in the difficulty of testing batteries, and this applies to storefronts, hospitals, combat fields and service garages. Battery rapid-test methods seem to dwell in medieval times, and this is especially evident when comparing advancements on other fronts. We don’t even have a reliable method to estimate state-of-charge, which is based mostly on voltage and coulomb counting. Assessing capacity, the leading health indicator of a battery, dwells further behind. Measuring the open circuit voltage and checking the internal resistance do not provide conclusive evidence of battery state-of-health.
The battery user may ask, “Why is the industry lagging so far behind?” The answer is simple: “Battery diagnostics are complex.” As there is no single analytical device to assess the health of a person, nor are instruments available that can quickly and reliably check the state-of-health of a battery. Like the human body, batteries can have multiple hidden deficiencies that no singular test method can identify with certainly.
A dead battery is easy to check and all testers are 100 percent accurate. The challenge comes in evaluating a battery in the 80–100 percent performance range while on duty. Regulators struggle to introduce battery test procedures. This is mostly due to the unavailability of suitable technology that can assess a battery on the fly. The battery is labeled “uncontrollable” for good reason; this gives it immunity.
The battery world devotes much effort on the super battery, but this improved battery is incomplete without being able to check performance while in service. Improving performance and reliability does not rest in a better battery alone, but in tracking the performance as it ages.
Professor Mark Orazem compares the complexity of testing batteries with the Indian tale in which blind men touch an elephant to learn what it is (Figure 3). Because each man only feels a part of the body, disagreements arise among them. Battery testing is complex even for the sighted man but progress is being made. Better technologies will eventually immerge.
Figure 3: Indian tale reflecting the complexity of estimating battery state-of-health
Story of blind men trying to figure out an elephant through touch. The tale provides insight into the relativism and opaqueness of a subject matter, such as a battery.
References
[1] Courtesy of Cadex
Last Updated: 4-Nov-2021
Batteries In A Portable World
The material on Battery University is based on the indispensable new 4th edition of "Batteries in a Portable World - A Handbook on Rechargeable Batteries for Non-Engineers" which is available for order through Amazon.com.
Find An Article
Table of Contents
-
Introduction 4>
- BU-001: Sharing Battery Knowledge
- BU-002: Introduction
- BU-003: Dedication
-
Crash Course on Batteries 4>
- BU-101: When Was the Battery Invented?
- BU-102: Early Innovators
- BU-103: Global Battery Markets
- BU-103a: Battery Breakthroughs: Myth or Fact?
- BU-104: Getting to Know the Battery
- BU-104a: Comparing the Battery with Other Power Sources
- BU-104b: Battery Building Blocks
- BU-104c: The Octagon Battery – What makes a Battery a Battery
- BU-105: Battery Definitions and what they mean
- BU-106: Advantages of Primary Batteries
- BU-106a: Choices of Primary Batteries
- BU-107: Comparison Table of Secondary Batteries
-
Battery Types 4>
- BU-201: How does the Lead Acid Battery Work?
- BU-201a: Absorbent Glass Mat (AGM)
- BU-201b: Gel Lead Acid Battery
- BU-202: New Lead Acid Systems
- BU-203: Nickel-based Batteries
- BU-204: How do Lithium Batteries Work?
- BU-205: Types of Lithium-ion
- BU-206: Lithium-polymer: Substance or Hype?
- BU-208: Cycling Performance
- BU-209: How does a Supercapacitor Work?
- BU-210: How does the Fuel Cell Work?
- BU-210a: Why does Sodium-sulfur need to be heated
- BU-210b: How does the Flow Battery Work?
- BU-211: Alternate Battery Systems
- BU-212: Future Batteries
- BU-214: Summary Table of Lead-based Batteries
- BU-215: Summary Table of Nickel-based Batteries
- BU-216: Summary Table of Lithium-based Batteries
- BU-217: Summary Table of Alternate Batteries
- BU-218: Summary Table of Future Batteries
-
Packaging and Safety 4>
- BU-301: A look at Old and New Battery Packaging
- BU-301a: Types of Battery Cells
- BU-302: Series and Parallel Battery Configurations
- BU-303: Confusion with Voltages
- BU-304: Why are Protection Circuits Needed?
- BU-304a: Safety Concerns with Li-ion
- BU-304b: Making Lithium-ion Safe
- BU-304c: Battery Safety in Public
- BU-305: Building a Lithium-ion Pack
- BU-306: What is the Function of the Separator?
- BU-307: How does Electrolyte Work?
- BU-308: Availability of Lithium
- BU-309: How does Graphite Work in Li-ion?
- BU-310: How does Cobalt Work in Li-ion?
- BU-311: Battery Raw Materials
-
Charge Methods 4>
- BU-401: How do Battery Chargers Work?
- BU-401a: Fast and Ultra-fast Chargers
- BU-402: What Is C-rate?
- BU-403: Charging Lead Acid
- BU-404: What is Equalizing Charge?
- BU-405: Charging with a Power Supply
- BU-406: Battery as a Buffer
- BU-407: Charging Nickel-cadmium
- BU-408: Charging Nickel-metal-hydride
- BU-409: Charging Lithium-ion
- BU-409a: Why do Old Li-ion Batteries Take Long to Charge?
- BU-409b: Charging Lithium Iron Phosphate
- BU-410: Charging at High and Low Temperatures
- BU-411: Charging from a USB Port
- BU-412: Charging without Wires
- BU-413: Charging with Solar, Turbine
- BU-413a: How to Store Renewable Energy in a Battery
- BU-414: How do Charger Chips Work?
- BU-415: How to Charge and When to Charge?
-
Discharge Methods 4>
- BU-501: Basics about Discharging
- BU-501a: Discharge Characteristics of Li-ion
- BU-502: Discharging at High and Low Temperatures
- BU-503: Determining Power Deliver by the Ragone Plot
- BU-504: How to Verify Sufficient Battery Capacity
-
"Smart" Battery 4>
- BU-601: How does a Smart Battery Work?
- BU-602: How does a Battery Fuel Gauge Work?
- BU-603: How to Calibrate a “Smart” Battery
- BU-603a: Calibrating SMBus Batteries with Impedance Tracking
- BU-604: How to Process Data from a “Smart” Battery
- Testing and Calibrating Smart Batteries
-
From Birth to Retirement 4>
- BU-701: How to Prime Batteries
- BU-702: How to Store Batteries
- BU-703: Health Concerns with Batteries
- BU-704: How to Transport Batteries
- BU-704a: Shipping Lithium-based Batteries by Air
- BU-704b: CAUTION & Overpack Labels
- BU-704c: Class 9 Label
- BU-704d: NFPA 704 Rating
- BU-704e: Battery for Personal and Fleet Use
- BU-705: How to Recycle Batteries
- BU-705a: Battery Recycling as a Business
- BU-706: Summary of Do's and Don'ts
-
How To Prolong Battery Life 4>
-
General 4>
- BU-801: Setting Battery Performance Standards
- BU-801a: How to Rate Battery Runtime
- BU-801b: How to Define Battery Life
- BU-802: What Causes Capacity Loss?
- BU-802a: How does Rising Internal Resistance affect Performance?
- BU-802b: What does Elevated Self-discharge Do?
- BU-802c: How Low can a Battery be Discharged?
- BU-803: Can Batteries Be Restored?
- BU-803a: Cell Matching and Balancing
- BU-803b: What causes Cells to Short?
- BU-803c: Loss of Electrolyte
-
Lead Acid 4>
- BU-804: How to Prolong Lead-acid Batteries
- BU-804a: Corrosion, Shedding and Internal Short
- BU-804b: Sulfation and How to Prevent it
- BU-804c: Acid Stratification and Surface Charge
- BU-805: Additives to Boost Flooded Lead Acid
- BU-806: Tracking Battery Capacity and Resistance as part of Aging
- BU-806a: How Heat and Loading affect Battery Life
-
Nickel-based 4>
- BU-807: How to Restore Nickel-based Batteries
- BU-807a: Effect of Zapping
-
Lithium-ion 4>
- BU-808: How to Prolong Lithium-based Batteries
- BU-808a: How to Awaken a Sleeping Li-ion
- BU-808b: What Causes Li-ion to Die?
- BU-808c: Coulombic and Energy Efficiency with the Battery
- BU-809: How to Maximize Runtime
- BU-810: What Everyone Should Know About Aftermarket Batteries
- BU-811: Assuring Minimum Operational Reserve Energy (MORE)
-
Battery Testing and Monitoring 4>
- BU-901: Fundamentals in Battery Testing
- BU-901b: How to Measure the Remaining Useful Life of a Battery
- BU-902: How to Measure Internal Resistance
- BU-902a: How to Measure CCA
- BU-903: How to Measure State-of-charge
- BU-904: How to Measure Capacity
- BU-905: Testing Lead Acid Batteries
- BU-905a: Testing Starter Batteries in Vehicles
- BU-905b: Knowing when to Replace a Starter Battery
- BU-906: Testing Nickel-based Batteries
- BU-907: Testing Lithium-based Batteries
- BU-907a: Battery Rapid-test Methods
- BU-907b: Advancements in Battery Testing
- BU-907c: Cloud Analytics in Batteries
- BU-908: Battery Management System (BMS)
- BU-909: Battery Test Equipment
- BU-910: How to Repair a Battery Pack
- BU-911: How to Repair a Laptop Battery
- BU-915: Testing Battery with EIS
- BU-916: Deep Battery Diagnostics
- BU-917: In Search for Performance Transparency with Batteries
- BU-918: Battery Endurance Plan
-
Amazing Value of a Battery 4>
- BU-1001: Batteries in Industries
- BU-1002: Electric Powertrain, then and now
- BU-1002a: Hybrid Electric Vehicles and the Battery
- BU-1002b: Environmental Benefit of the Electric Powertrain
- BU-1003: Electric Vehicle (EV)
- BU-1003a: Battery Aging in an Electric Vehicle (EV)
- BU-1004: Charging an Electric Vehicle
- BU-1005: Does the Fuel Cell-powered Vehicle have a Future?
- BU-1006: Cost of Mobile and Renewable Power
- BU-1007: Net Calorific Value
- BU-1008: Working towards Sustainability
- BU-1009: Battery Paradox - Afterword
-
Information 4>
- BU-1101: Glossary
- BU-1102: Abbreviations
- BU-1103: Bibliography
- BU-1104: About the Author
- BU-1105: About Cadex (Sponsor)
- BU-1106: Author's Creed
- BU-1107: Disclaimer
- BU-1108: Copyright
-
Learning Tools 4>
- BU-1501 Battery History
- BU-1502 Basics about Batteries
- BU-1503 How to Maintain Batteries
- BU-1504 Battery Test & Analyzing Devices
- BU-1505 Short History of Cadex
-
Battery Articles 4>
- Perception of a Battery Tester
- Green Deal
- Risk Management in Batteries
- Predictive Test Methods for Starter Batteries
- Why Mobile Phone Batteries do not last as long as an EV Battery
- Battery Rapid-test Methods
- How to Charge Li-ion with a Parasitic Load
- Ultra-fast Charging
- Assuring Safety of Lithium-ion in the Workforce
- Diagnostic Battery Management
- Tweaking the Mobile Phone Battery
- Battery Test Methods
- Battery Testing and Safety
- How to Make Battery Performance Transparent
- Battery Diagnostics On-the-fly
- Making Battery State-of-health Transparent
- Batteries will eventually die, but when and how?
- Why does Pokémon Go rob so much Battery Power?
- How to Care for the Battery
- Tesla’s iPhone Moment — How the Powerwall will Change Global Energy Use
- Painting the Battery Green by giving it a Second Life
- Charging without Wires — A Solution or Laziness
- What everyone should know about Battery Chargers
- A Look at Cell Formats and how to Build a good Battery
- Battery Breakthroughs — Myth or Fact?
- Rapid-test Methods that No Longer Work
- Shipping Lithium-based Batteries by Air
- How to make Batteries more Reliable and Longer Lasting
- What causes Lithium-ion to die?
- Safety of Lithium-ion Batteries
- Recognizing Battery Capacity as the Missing Link
- Managing Batteries for Warehouse Logistics
- Caring for your Starter Battery
- Giving Batteries a Second Life
- How to Make Batteries in Medical Devices More Reliable
- Possible Solutions for the Battery Problem on the Boeing 787
- Impedance Spectroscopy Checks Battery Capacity in 15 Seconds
- How to Improve the Battery Fuel Gauge
- Examining Loading Characteristics on Primary and Secondary Batteries
-
Language Pool 4>
- BU-001: Compartir conocimiento sobre baterías
- BU-002: Introducción
- BU-003: Dedicatoria
- BU-104: Conociendo la Batería
- BU-302: Configuraciones de Baterías en Serie y Paralelo
-
Batteries in a Portable World book 4>
- Change-log of “Batteries in a Portable World,” 4th edition: Chapters 1 - 3
- Change-log of “Batteries in a Portable World,” 4th edition: Chapters 4 - 10