BU-411: Charging from a USB Port
The Universal Serial Bus (USB) was introduced in 1996 and has since become one of the most widespread and convenient interfaces for electronic devices. Compaq, DEC, IBM, Intel, NEC and Nortel contributed to the developments with the goal of simplifying the interconnection of peripheral devices to a PC, as well as to allow a greater data transfer rate than was feasible with earlier interfaces. The USB port can also be used to charge personal devices, but with a current limit of 500mA on the original design, this might have been an afterthought.
A typical USB network consists of a host that is often a PC and peripherals such as a printer, smartphone or camera. Data streams in both directions but the power is unidirectional and always flows from the host to the device. The host cannot take power from an outside source.
With 5V and 500mA available on version USB 1.0 and 2.0, and 900mA on USB 3.0, the USB can charge a small single-cell Li-ion pack. There is, however, a danger of overloading a USB hub when attaching too many gadgets. Charging a device that draws 500mA connected together with other loads will exceed the port’s current limit, leading to a voltage drop and a possible system failure. To prevent overload, some hosts include current-limiting circuits that shut down the supply when overdrawn.
The original USB port can only charge a small single-cell Li-ion battery. Charging a 3.6V pack begins by applying a constant current to a voltage peak of 4.20V/cell, at which point the voltage peaks and the current begins to taper off. (See BU-409: Charging Lithium-ion) Due to the voltage drop in the cable and connectors, which is about 350mV, as well as losses in the charging circuit, the 5V supply may not be high enough to fully charge the battery. This is a minor problem; the battery will only charge to about 70 percent state-of-charge and deliver a slightly shorter runtime than with a fully saturated charge. The advantage: Li-ion will last longer if not fully charged.
Standard A and B USB plugs, as illustrated in Figure 1, feature four pins and a shield. Pin 1 delivers +5VDC and pin 4 forms the ground that also connects to the shield. The two shorter pins, 2 and 3, are marked D- and D+ and carry data. When charging a battery, these pins have no other function than to negotiate current.
Figure 1: Pin configuration of standard A and standard B USB connectors, viewed from the mating end of the plugs
Pin 1 carries +5VDC (red wire) and 4 is ground (black wire). The housing connects to the ground and provides shielding. Pin 2 (D-, white wire) and pin 3 (D+, green wire) carry data
Besides the standard type-A and type-B configurations with 4 pins, there are also the USB Mini-A, Mini-B, Micro-A and Micro-B that include an ID pin to permit detection of which cable end is plugged in. The outer pin-1 is positive and pin-4 is negative. USB cables are generally standard type-A on one end and either type-B, Mini-B or Micro-B on the other. The new type-C connector described later features 24 pins and runs on the USB 3.1 standard.
Power Delivery
USB 2.0 with a current of 500mA has limitations when charging a larger smartphone or tablet battery. Keeping the smartphone running on a bright screen during charge could result in a net discharge of the battery as the USB cannot satisfy both. Connecting a high-speed disk drive requires more than 500mA and this can create a power issue with the original USB port.
In 2008, USB 3.0 relieved the power shortage by upping the current to 900mA. This current ceiling was chosen to prevent the thin ground wire from interfering with high-speed data transfer when drawing a full load.
With the need for more power, the USB Implementers Forum released the Battery Charging Specification in 2007 that enables a faster way to charge off a USB host. This led to the dedicated charger port (DCP) serving as a USB charger, delivering currents of 1,500mA and higher by connecting the DCP to an AC outlet or a vehicle. To activate the DCP, the D- and D+ pins are internally connected by a resistor of 200 ohms or less. This distinguishes the DCP from the original USB ports that carry data. Some Apple products limit the charge current by connecting different resistor values to the D+ and D- pins.
To support charging and data communication when using the DCP, a Y-shaped cable is offered that connects to the original USB port for data streaming and to the DCP port to satisfy charging needs. This appears like a logical solution but the USB compliance specification states that the “use of a Y-cable is prohibited on any USB peripheral,” meaning that “if a USB peripheral requires more power than allowed by the USB specification to which it is designed, then it must be self-powered.” The Y-cables and the so-called accessory charging adapters (ACA) are being used without apparent difficulties.
The question is asked: “Can I cause damage by plugging my device into a USB charger that delivers more current than 500mA and 900mA?” The answer is no. The device only draws what it requires and no more. An analogy is plugging in a lamp or a toaster into an AC wall plug. The lamp requires little current while the toaster goes to the maximum. More power from the USB charger will shorten the charge time.
Sleep-and-charge Mode
In most cases, turning the computer off also shuts down the USB. Some PCs feature the sleep-and-charge USB port that remains powered on and can be used to charge electronic devices when the computer is off. Sleep-and-charge USB ports might be colored in red or yellow, but no standard exists. Dell adds a lightning bolt icon and calls it the “PowerShare” while Toshiba uses the term “USB Sleep-and-Charge.” The sleep-and-charge USB ports may also be marked with the acronym USB over the drawing of a battery.
USB 3.1 – Type-C Connector
As with most other successful technologies, USB has spawned several versions of connectors and cables over the years. USB chargers do not always work as advertised and charge times are slow. Incompatibilities between competitive systems exist, willingly or by oversight.
Companies overseeing USB standards are aware of the shortcomings and brought out the type-C connector and cable based on the USB 3.1 standard. Rather than using four-pins as in the classic type-A and type-B, the type-C connector has 24 pins and is reversible, meaning it can be plugged in either way. It supports 900mA and, on command, delivers 1.5A and 3.0A over a 5V power bus while streaming data. This results in 7.5 and 15 watt power consumption respectively, as opposed to 2.5W using the original USB (current times voltage = wattage). The type-C can go up to 5A at 12V or 20V, providing 60W and 100W respectively. Figure 2 shows the pinout of the USB Type-C connector.
Figure 2: Pin configuration of USB Type-C connector
Side A and B are mirror images. Some pins are connected in parallel to gain higher power and more reliable connections.
New devices come with the USB-C connector and USB 3.1, but consumers beg for two or three regular USB 3.0 ports on their gadgets to support what worked so well in the past. USB 3.1 is backward compatible with USB 2.0 and USB 3.0 and the classic type-A and type-B connectors. While in transition to the type-C, adaptors are available to convert, but expect lower data transfer speeds with adapters than what USB 3.1 offers.
With the availability of higher currents and voltages on the Type-C system as compared to the Standard A and B connectors, damage to a device can be afflicted when giving a wrong digital command. The commands may come from a device or an adapter requesting modified power demands. It is advised to only use compatible or trustworthy brands when experimenting with higher voltages and currents in USB connectors.
Last Updated: 27-Oct-2021
Batteries In A Portable World
The material on Battery University is based on the indispensable new 4th edition of "Batteries in a Portable World - A Handbook on Rechargeable Batteries for Non-Engineers" which is available for order through Amazon.com.
Find An Article
Table of Contents
-
Introduction 4>
- BU-001: Sharing Battery Knowledge
- BU-002: Introduction
- BU-003: Dedication
-
Crash Course on Batteries 4>
- BU-101: When Was the Battery Invented?
- BU-102: Early Innovators
- BU-103: Global Battery Markets
- BU-103a: Battery Breakthroughs: Myth or Fact?
- BU-104: Getting to Know the Battery
- BU-104a: Comparing the Battery with Other Power Sources
- BU-104b: Battery Building Blocks
- BU-104c: The Octagon Battery – What makes a Battery a Battery
- BU-105: Battery Definitions and what they mean
- BU-106: Advantages of Primary Batteries
- BU-106a: Choices of Primary Batteries
- BU-107: Comparison Table of Secondary Batteries
-
Battery Types 4>
- BU-201: How does the Lead Acid Battery Work?
- BU-201a: Absorbent Glass Mat (AGM)
- BU-201b: Gel Lead Acid Battery
- BU-202: New Lead Acid Systems
- BU-203: Nickel-based Batteries
- BU-204: How do Lithium Batteries Work?
- BU-205: Types of Lithium-ion
- BU-206: Lithium-polymer: Substance or Hype?
- BU-208: Cycling Performance
- BU-209: How does a Supercapacitor Work?
- BU-210: How does the Fuel Cell Work?
- BU-210a: Why does Sodium-sulfur need to be heated
- BU-210b: How does the Flow Battery Work?
- BU-211: Alternate Battery Systems
- BU-212: Future Batteries
- BU-214: Summary Table of Lead-based Batteries
- BU-215: Summary Table of Nickel-based Batteries
- BU-216: Summary Table of Lithium-based Batteries
- BU-217: Summary Table of Alternate Batteries
- BU-218: Summary Table of Future Batteries
-
Packaging and Safety 4>
- BU-301: A look at Old and New Battery Packaging
- BU-301a: Types of Battery Cells
- BU-302: Series and Parallel Battery Configurations
- BU-303: Confusion with Voltages
- BU-304: Why are Protection Circuits Needed?
- BU-304a: Safety Concerns with Li-ion
- BU-304b: Making Lithium-ion Safe
- BU-304c: Battery Safety in Public
- BU-305: Building a Lithium-ion Pack
- BU-306: What is the Function of the Separator?
- BU-307: How does Electrolyte Work?
- BU-308: Availability of Lithium
- BU-309: How does Graphite Work in Li-ion?
- BU-310: How does Cobalt Work in Li-ion?
- BU-311: Battery Raw Materials
-
Charge Methods 4>
- BU-401: How do Battery Chargers Work?
- BU-401a: Fast and Ultra-fast Chargers
- BU-402: What Is C-rate?
- BU-403: Charging Lead Acid
- BU-404: What is Equalizing Charge?
- BU-405: Charging with a Power Supply
- BU-406: Battery as a Buffer
- BU-407: Charging Nickel-cadmium
- BU-408: Charging Nickel-metal-hydride
- BU-409: Charging Lithium-ion
- BU-409a: Why do Old Li-ion Batteries Take Long to Charge?
- BU-409b: Charging Lithium Iron Phosphate
- BU-410: Charging at High and Low Temperatures
- BU-411: Charging from a USB Port
- BU-412: Charging without Wires
- BU-413: Charging with Solar, Turbine
- BU-413a: How to Store Renewable Energy in a Battery
- BU-414: How do Charger Chips Work?
- BU-415: How to Charge and When to Charge?
-
Discharge Methods 4>
- BU-501: Basics about Discharging
- BU-501a: Discharge Characteristics of Li-ion
- BU-502: Discharging at High and Low Temperatures
- BU-503: Determining Power Deliver by the Ragone Plot
- BU-504: How to Verify Sufficient Battery Capacity
-
"Smart" Battery 4>
- BU-601: How does a Smart Battery Work?
- BU-602: How does a Battery Fuel Gauge Work?
- BU-603: How to Calibrate a “Smart” Battery
- BU-603a: Calibrating SMBus Batteries with Impedance Tracking
- BU-604: How to Process Data from a “Smart” Battery
- Testing and Calibrating Smart Batteries
-
From Birth to Retirement 4>
- BU-701: How to Prime Batteries
- BU-702: How to Store Batteries
- BU-703: Health Concerns with Batteries
- BU-704: How to Transport Batteries
- BU-704a: Shipping Lithium-based Batteries by Air
- BU-704b: CAUTION & Overpack Labels
- BU-704c: Class 9 Label
- BU-704d: NFPA 704 Rating
- BU-704e: Battery for Personal and Fleet Use
- BU-705: How to Recycle Batteries
- BU-705a: Battery Recycling as a Business
- BU-706: Summary of Do's and Don'ts
-
How To Prolong Battery Life 4>
-
General 4>
- BU-801: Setting Battery Performance Standards
- BU-801a: How to Rate Battery Runtime
- BU-801b: How to Define Battery Life
- BU-802: What Causes Capacity Loss?
- BU-802a: How does Rising Internal Resistance affect Performance?
- BU-802b: What does Elevated Self-discharge Do?
- BU-802c: How Low can a Battery be Discharged?
- BU-803: Can Batteries Be Restored?
- BU-803a: Cell Matching and Balancing
- BU-803b: What causes Cells to Short?
- BU-803c: Loss of Electrolyte
-
Lead Acid 4>
- BU-804: How to Prolong Lead-acid Batteries
- BU-804a: Corrosion, Shedding and Internal Short
- BU-804b: Sulfation and How to Prevent it
- BU-804c: Acid Stratification and Surface Charge
- BU-805: Additives to Boost Flooded Lead Acid
- BU-806: Tracking Battery Capacity and Resistance as part of Aging
- BU-806a: How Heat and Loading affect Battery Life
-
Nickel-based 4>
- BU-807: How to Restore Nickel-based Batteries
- BU-807a: Effect of Zapping
-
Lithium-ion 4>
- BU-808: How to Prolong Lithium-based Batteries
- BU-808a: How to Awaken a Sleeping Li-ion
- BU-808b: What Causes Li-ion to Die?
- BU-808c: Coulombic and Energy Efficiency with the Battery
- BU-809: How to Maximize Runtime
- BU-810: What Everyone Should Know About Aftermarket Batteries
- BU-811: Assuring Minimum Operational Reserve Energy (MORE)
-
Battery Testing and Monitoring 4>
- BU-901: Fundamentals in Battery Testing
- BU-901b: How to Measure the Remaining Useful Life of a Battery
- BU-902: How to Measure Internal Resistance
- BU-902a: How to Measure CCA
- BU-903: How to Measure State-of-charge
- BU-904: How to Measure Capacity
- BU-905: Testing Lead Acid Batteries
- BU-905a: Testing Starter Batteries in Vehicles
- BU-905b: Knowing when to Replace a Starter Battery
- BU-906: Testing Nickel-based Batteries
- BU-907: Testing Lithium-based Batteries
- BU-907a: Battery Rapid-test Methods
- BU-907b: Advancements in Battery Testing
- BU-907c: Cloud Analytics in Batteries
- BU-908: Battery Management System (BMS)
- BU-909: Battery Test Equipment
- BU-910: How to Repair a Battery Pack
- BU-911: How to Repair a Laptop Battery
- BU-915: Testing Battery with EIS
- BU-916: Deep Battery Diagnostics
- BU-917: In Search for Performance Transparency with Batteries
- BU-918: Battery Endurance Plan
-
Amazing Value of a Battery 4>
- BU-1001: Batteries in Industries
- BU-1002: Electric Powertrain, then and now
- BU-1002a: Hybrid Electric Vehicles and the Battery
- BU-1002b: Environmental Benefit of the Electric Powertrain
- BU-1003: Electric Vehicle (EV)
- BU-1003a: Battery Aging in an Electric Vehicle (EV)
- BU-1004: Charging an Electric Vehicle
- BU-1005: Does the Fuel Cell-powered Vehicle have a Future?
- BU-1006: Cost of Mobile and Renewable Power
- BU-1007: Net Calorific Value
- BU-1008: Working towards Sustainability
- BU-1009: Battery Paradox - Afterword
-
Information 4>
- BU-1101: Glossary
- BU-1102: Abbreviations
- BU-1103: Bibliography
- BU-1104: About the Author
- BU-1105: About Cadex (Sponsor)
- BU-1106: Author's Creed
- BU-1107: Disclaimer
- BU-1108: Copyright
-
Learning Tools 4>
- BU-1501 Battery History
- BU-1502 Basics about Batteries
- BU-1503 How to Maintain Batteries
- BU-1504 Battery Test & Analyzing Devices
- BU-1505 Short History of Cadex
-
Battery Articles 4>
- Perception of a Battery Tester
- Green Deal
- Risk Management in Batteries
- Predictive Test Methods for Starter Batteries
- Why Mobile Phone Batteries do not last as long as an EV Battery
- Battery Rapid-test Methods
- How to Charge Li-ion with a Parasitic Load
- Ultra-fast Charging
- Assuring Safety of Lithium-ion in the Workforce
- Diagnostic Battery Management
- Tweaking the Mobile Phone Battery
- Battery Test Methods
- Battery Testing and Safety
- How to Make Battery Performance Transparent
- Battery Diagnostics On-the-fly
- Making Battery State-of-health Transparent
- Batteries will eventually die, but when and how?
- Why does Pokémon Go rob so much Battery Power?
- How to Care for the Battery
- Tesla’s iPhone Moment — How the Powerwall will Change Global Energy Use
- Painting the Battery Green by giving it a Second Life
- Charging without Wires — A Solution or Laziness
- What everyone should know about Battery Chargers
- A Look at Cell Formats and how to Build a good Battery
- Battery Breakthroughs — Myth or Fact?
- Rapid-test Methods that No Longer Work
- Shipping Lithium-based Batteries by Air
- How to make Batteries more Reliable and Longer Lasting
- What causes Lithium-ion to die?
- Safety of Lithium-ion Batteries
- Recognizing Battery Capacity as the Missing Link
- Managing Batteries for Warehouse Logistics
- Caring for your Starter Battery
- Giving Batteries a Second Life
- How to Make Batteries in Medical Devices More Reliable
- Possible Solutions for the Battery Problem on the Boeing 787
- Impedance Spectroscopy Checks Battery Capacity in 15 Seconds
- How to Improve the Battery Fuel Gauge
- Examining Loading Characteristics on Primary and Secondary Batteries
-
Language Pool 4>
- BU-001: Compartir conocimiento sobre baterías
- BU-002: Introducción
- BU-003: Dedicatoria
- BU-104: Conociendo la Batería
- BU-302: Configuraciones de Baterías en Serie y Paralelo
-
Batteries in a Portable World book 4>
- Change-log of “Batteries in a Portable World,” 4th edition: Chapters 1 - 3
- Change-log of “Batteries in a Portable World,” 4th edition: Chapters 4 - 10