BU-407: Charging Nickel-cadmium
Nickel-based batteries are more complex to charge than Li-ion and lead acid. Lithium- and lead-based systems are charged with a regulated current to bring the voltage to a set limit after which the battery saturates until fully charged. This method is called constant current constant voltage (CCCV). Nickel-based batteries also charge with constant current but the voltage is allowed to rise freely. Full charge detection occurs by observing a slight voltage drop after a steady rise. This may be connected with plateau timing and temperature rise over time (more below).
Battery manufacturers recommend that new batteries be slow-charged for 16–24 hours before use. A slow charge brings all cells in a battery pack to an equal charge level. This is important because each cell within the nickel-cadmium battery may have self-discharged at its own rate. Furthermore, during long storage the electrolyte tends to gravitate to the bottom of the cell and the initial slow charge helps in the redistribution to eliminate dry spots on the separator. (See also BU-803a: Loss of Electrolyte)
Battery manufacturers do not fully format nickel- and lead-based batteries before shipment. The cells reach optimal performance after priming that involves several charge/discharge cycles. This is part of normal use; it can also be done with a battery analyzer. Quality cells are known to perform to full specifications after only 5–7 cycles; others may take 50–100 cycles. Peak capacity occurs between 100–300 cycles, after which the performance starts to drop gradually.
Most rechargeable cells include a safety vent that releases excess pressure if incorrectly charged. The vent on a NiCd cell opens at 1,000–1,400kPa (150–200psi). Pressure released through a re-sealable vent causes no damage; however, with each venting event some electrolyte escapes and the seal may begin to leak. The formation of a white powder at the vent opening makes this visible. Multiple venting eventually results in a dry-out condition. A battery should never be stressed to the point of venting.
Full-charge Detection by Temperature
Full-charge detection of sealed nickel-based batteries is more complex than that of lead acid and lithium-ion. Low-cost chargers often use temperature sensing to end the fast charge, but this can be inaccurate. The core of a cell is several degrees warmer than the skin where the temperature is measured, and the delay that occurs causes over-charge. Charger manufacturers use 50°C (122°F) as temperature cut-off. Although any prolonged temperature above 45°C (113°F) is harmful to the battery, a brief overshoot is acceptable as long as the battery temperature drops quickly when the “ready” light appears.
Advanced chargers no longer rely on a fixed temperature threshold but sense the rate of temperature increase over time, also known as delta temperature over delta time, or dT/dt. Rather than waiting for an absolute temperature to occur, dT/dt uses the rapid temperature increase towards the end of charge to trigger the “ready” light. The delta temperature method keeps the battery cooler than a fixed temperature cut-off, but the cells need to charge reasonably fast to trigger the temperature rise. Charge termination occurs when the temperature rises 1°C (1.8°F) per minute. If the battery cannot achieve the needed temperature rise, an absolute temperature cut-off set to 60°C (140°F) terminates the charge.
Chargers relying on temperature inflict harmful overcharges when a fully charged battery is repeatedly removed and reinserted. This is the case with chargers in vehicles and desktop stations where a two-way radio is being detached with each use. Reconnection initiates a new charge cycle that requires reheating of the battery.
Li ion systems have an advantage in that voltage governs state-of-charge. Reinserting a fully charged Li-ion battery immediately pushes the voltage to the full-charge threshold, the current drops and the charger turns off shortly without needing to create a temperature signature.
Full-charge Detection by Voltage Signature
Advanced chargers terminate charge when a defined voltage signature occurs. This provides a more precise full-charge detection of nickel-based batteries than temperature-based methods. The charger looks for a voltage drop that occurs when the battery has reached full charge. This method is called negative delta V (NDV).
NDV is the recommended full-charge detection method for chargers applying a charge rate of 0.3C and higher. It offers a quick response time and works well with a partially or fully charged battery. When inserting a fully charged battery, the terminal voltage rises quickly and then drops sharply to trigger the ready state. The charge lasts only a few minutes and the cells remain cool. NiCd chargers with NDV detection typically respond to a voltage drop of 5mV per cell.
To achieve a reliable voltage signature, the charge rate must be 0.5C and higher. Slower charging produces a less defined voltage drop, especially if the cells are mismatched in which case each cell reaches full charge at a different time point. To assure reliable full-charge detection, most NDV chargers also use a voltage plateau detector that terminates the charge when the voltage remains in a steady state for a given time. These chargers also include delta temperature, absolute temperature and a time-out timer.
Fast charging improves the charge efficiency. At 1C charge rate, the efficiency of a standard NiCd is 91 percent and the charge time is about an hour (66 minutes at 91 percent). On a slow charger, the efficiency drops to 71 percent, prolonging the charge time to about 14 hours at 0.1C.
During the first 70 percent of charge, the efficiency of a NiCd is close to 100 percent. The battery absorbs almost all energy and the pack remains cool. NiCd batteries designed for fast charging can be charged with currents that are several times the C-rating without extensive heat buildup. In fact, NiCd is the only battery that can be ultra-fast charged with minimal stress. Cells made for ultra-fast charging can be charged to 70 percent in minutes.
Figure 1 shows the relationship of cell voltage, pressure and temperature of a charging NiCd. Everything goes well up to about 70 percent charge, when charge efficiency drops. The cells begin to generate gases, the pressure rises and the temperature increases rapidly. To reduce battery stress, some chargers lower the charge rate past the 70 percent mark.
Figure 1: Charge characteristics of a NiCd cell [1]
Charge efficiency is high up to 70% SoC* and then charge acceptances drops. NiMH is similar to NiCd. Charge efficiency measures the battery’s ability to accept charge and has similarities with coulombic efficiency.
* SoC refers to relative state-of-charge (RSoC) reflecting the actual energy a battery can store. Full charge will show 100% even if the capacity has faded. (See BU-105: Battery Definition and what they mean)
Ultra-high-capacity NiCd batteries tend to heat up more than standard NiCds when charging at 1C and higher and this is partly due to increased internal resistance. Applying a high current at the initial charge and then tapering off to a lower rate as the charge acceptance decreases is a recommended fast charge method for these more fragile batteries. (See BU-208: Cycle Performance)
Interspersing discharge pulses between charge pulses is known to improve charge acceptance of nickel-based batteries. Commonly referred to as a “burp” or “reverse load” charge, this method assists in the recombination of gases generated during charge. The result is a cooler and more effective charge than with conventional DC chargers. The method is also said to reduce the “memory” effect as the battery is being exercised with pulses. (See BU-807: How to Restore Nickel-based Batteries) While pulse charging may be valuable for NiCd and NiMH batteries, this method does not apply to lead- and lithium-based systems. These batteries work best with a pure DC voltage.
After full charge, the NiCd battery receives a trickle charge of 0.05–0.1C to compensate for self-discharge. To reduce possible overcharge, charger designers aim for the lowest possible trickle charge current. In spite of this, it is best not to leave nickel-based batteries in a charger for more than a few days. Remove them and recharge before use.
Charging Flooded Nickel-cadmium Batteries
Flooded NiCd is charged with a constant current to about 1.55V/cell. The current is then reduced to 0.1C and the charge continues until 1.55V/cell is reached again. At this point, a trickle charge is applied and the voltage is allowed to float freely. Higher charge voltages are possible but this generates excess gas and causes rapid water depletion. NDV is not applicable as the flooded NiCd does not absorb gases because it is not under pressure.
References
[1] Source: Cadex
Last Updated: 25-Oct-2021
Batteries In A Portable World
The material on Battery University is based on the indispensable new 4th edition of "Batteries in a Portable World - A Handbook on Rechargeable Batteries for Non-Engineers" which is available for order through Amazon.com.
Find An Article
Table of Contents
-
Introduction 4>
- BU-001: Sharing Battery Knowledge
- BU-002: Introduction
- BU-003: Dedication
-
Crash Course on Batteries 4>
- BU-101: When Was the Battery Invented?
- BU-102: Early Innovators
- BU-103: Global Battery Markets
- BU-103a: Battery Breakthroughs: Myth or Fact?
- BU-104: Getting to Know the Battery
- BU-104a: Comparing the Battery with Other Power Sources
- BU-104b: Battery Building Blocks
- BU-104c: The Octagon Battery – What makes a Battery a Battery
- BU-105: Battery Definitions and what they mean
- BU-106: Advantages of Primary Batteries
- BU-106a: Choices of Primary Batteries
- BU-107: Comparison Table of Secondary Batteries
-
Battery Types 4>
- BU-201: How does the Lead Acid Battery Work?
- BU-201a: Absorbent Glass Mat (AGM)
- BU-201b: Gel Lead Acid Battery
- BU-202: New Lead Acid Systems
- BU-203: Nickel-based Batteries
- BU-204: How do Lithium Batteries Work?
- BU-205: Types of Lithium-ion
- BU-206: Lithium-polymer: Substance or Hype?
- BU-208: Cycling Performance
- BU-209: How does a Supercapacitor Work?
- BU-210: How does the Fuel Cell Work?
- BU-210a: Why does Sodium-sulfur need to be heated
- BU-210b: How does the Flow Battery Work?
- BU-211: Alternate Battery Systems
- BU-212: Future Batteries
- BU-214: Summary Table of Lead-based Batteries
- BU-215: Summary Table of Nickel-based Batteries
- BU-216: Summary Table of Lithium-based Batteries
- BU-217: Summary Table of Alternate Batteries
- BU-218: Summary Table of Future Batteries
-
Packaging and Safety 4>
- BU-301: A look at Old and New Battery Packaging
- BU-301a: Types of Battery Cells
- BU-302: Series and Parallel Battery Configurations
- BU-303: Confusion with Voltages
- BU-304: Why are Protection Circuits Needed?
- BU-304a: Safety Concerns with Li-ion
- BU-304b: Making Lithium-ion Safe
- BU-304c: Battery Safety in Public
- BU-305: Building a Lithium-ion Pack
- BU-306: What is the Function of the Separator?
- BU-307: How does Electrolyte Work?
- BU-308: Availability of Lithium
- BU-309: How does Graphite Work in Li-ion?
- BU-310: How does Cobalt Work in Li-ion?
- BU-311: Battery Raw Materials
-
Charge Methods 4>
- BU-401: How do Battery Chargers Work?
- BU-401a: Fast and Ultra-fast Chargers
- BU-402: What Is C-rate?
- BU-403: Charging Lead Acid
- BU-404: What is Equalizing Charge?
- BU-405: Charging with a Power Supply
- BU-406: Battery as a Buffer
- BU-407: Charging Nickel-cadmium
- BU-408: Charging Nickel-metal-hydride
- BU-409: Charging Lithium-ion
- BU-409a: Why do Old Li-ion Batteries Take Long to Charge?
- BU-409b: Charging Lithium Iron Phosphate
- BU-410: Charging at High and Low Temperatures
- BU-411: Charging from a USB Port
- BU-412: Charging without Wires
- BU-413: Charging with Solar, Turbine
- BU-413a: How to Store Renewable Energy in a Battery
- BU-414: How do Charger Chips Work?
- BU-415: How to Charge and When to Charge?
-
Discharge Methods 4>
- BU-501: Basics about Discharging
- BU-501a: Discharge Characteristics of Li-ion
- BU-502: Discharging at High and Low Temperatures
- BU-503: Determining Power Deliver by the Ragone Plot
- BU-504: How to Verify Sufficient Battery Capacity
-
"Smart" Battery 4>
- BU-601: How does a Smart Battery Work?
- BU-602: How does a Battery Fuel Gauge Work?
- BU-603: How to Calibrate a “Smart” Battery
- BU-603a: Calibrating SMBus Batteries with Impedance Tracking
- BU-604: How to Process Data from a “Smart” Battery
- Testing and Calibrating Smart Batteries
-
From Birth to Retirement 4>
- BU-701: How to Prime Batteries
- BU-702: How to Store Batteries
- BU-703: Health Concerns with Batteries
- BU-704: How to Transport Batteries
- BU-704a: Shipping Lithium-based Batteries by Air
- BU-704b: CAUTION & Overpack Labels
- BU-704c: Class 9 Label
- BU-704d: NFPA 704 Rating
- BU-704e: Battery for Personal and Fleet Use
- BU-705: How to Recycle Batteries
- BU-705a: Battery Recycling as a Business
- BU-706: Summary of Do's and Don'ts
-
How To Prolong Battery Life 4>
-
General 4>
- BU-801: Setting Battery Performance Standards
- BU-801a: How to Rate Battery Runtime
- BU-801b: How to Define Battery Life
- BU-802: What Causes Capacity Loss?
- BU-802a: How does Rising Internal Resistance affect Performance?
- BU-802b: What does Elevated Self-discharge Do?
- BU-802c: How Low can a Battery be Discharged?
- BU-803: Can Batteries Be Restored?
- BU-803a: Cell Matching and Balancing
- BU-803b: What causes Cells to Short?
- BU-803c: Loss of Electrolyte
-
Lead Acid 4>
- BU-804: How to Prolong Lead-acid Batteries
- BU-804a: Corrosion, Shedding and Internal Short
- BU-804b: Sulfation and How to Prevent it
- BU-804c: Acid Stratification and Surface Charge
- BU-805: Additives to Boost Flooded Lead Acid
- BU-806: Tracking Battery Capacity and Resistance as part of Aging
- BU-806a: How Heat and Loading affect Battery Life
-
Nickel-based 4>
- BU-807: How to Restore Nickel-based Batteries
- BU-807a: Effect of Zapping
-
Lithium-ion 4>
- BU-808: How to Prolong Lithium-based Batteries
- BU-808a: How to Awaken a Sleeping Li-ion
- BU-808b: What Causes Li-ion to Die?
- BU-808c: Coulombic and Energy Efficiency with the Battery
- BU-809: How to Maximize Runtime
- BU-810: What Everyone Should Know About Aftermarket Batteries
- BU-811: Assuring Minimum Operational Reserve Energy (MORE)
-
Battery Testing and Monitoring 4>
- BU-901: Fundamentals in Battery Testing
- BU-901b: How to Measure the Remaining Useful Life of a Battery
- BU-902: How to Measure Internal Resistance
- BU-902a: How to Measure CCA
- BU-903: How to Measure State-of-charge
- BU-904: How to Measure Capacity
- BU-905: Testing Lead Acid Batteries
- BU-905a: Testing Starter Batteries in Vehicles
- BU-905b: Knowing when to Replace a Starter Battery
- BU-906: Testing Nickel-based Batteries
- BU-907: Testing Lithium-based Batteries
- BU-907a: Battery Rapid-test Methods
- BU-907b: Advancements in Battery Testing
- BU-907c: Cloud Analytics in Batteries
- BU-908: Battery Management System (BMS)
- BU-909: Battery Test Equipment
- BU-910: How to Repair a Battery Pack
- BU-911: How to Repair a Laptop Battery
- BU-915: Testing Battery with EIS
- BU-916: Deep Battery Diagnostics
- BU-917: In Search for Performance Transparency with Batteries
- BU-918: Battery Endurance Plan
-
Amazing Value of a Battery 4>
- BU-1001: Batteries in Industries
- BU-1002: Electric Powertrain, then and now
- BU-1002a: Hybrid Electric Vehicles and the Battery
- BU-1002b: Environmental Benefit of the Electric Powertrain
- BU-1003: Electric Vehicle (EV)
- BU-1003a: Battery Aging in an Electric Vehicle (EV)
- BU-1004: Charging an Electric Vehicle
- BU-1005: Does the Fuel Cell-powered Vehicle have a Future?
- BU-1006: Cost of Mobile and Renewable Power
- BU-1007: Net Calorific Value
- BU-1008: Working towards Sustainability
- BU-1009: Battery Paradox - Afterword
-
Information 4>
- BU-1101: Glossary
- BU-1102: Abbreviations
- BU-1103: Bibliography
- BU-1104: About the Author
- BU-1105: About Cadex (Sponsor)
- BU-1106: Author's Creed
- BU-1107: Disclaimer
- BU-1108: Copyright
-
Learning Tools 4>
- BU-1501 Battery History
- BU-1502 Basics about Batteries
- BU-1503 How to Maintain Batteries
- BU-1504 Battery Test & Analyzing Devices
- BU-1505 Short History of Cadex
-
Battery Articles 4>
- Perception of a Battery Tester
- Green Deal
- Risk Management in Batteries
- Predictive Test Methods for Starter Batteries
- Why Mobile Phone Batteries do not last as long as an EV Battery
- Battery Rapid-test Methods
- How to Charge Li-ion with a Parasitic Load
- Ultra-fast Charging
- Assuring Safety of Lithium-ion in the Workforce
- Diagnostic Battery Management
- Tweaking the Mobile Phone Battery
- Battery Test Methods
- Battery Testing and Safety
- How to Make Battery Performance Transparent
- Battery Diagnostics On-the-fly
- Making Battery State-of-health Transparent
- Batteries will eventually die, but when and how?
- Why does Pokémon Go rob so much Battery Power?
- How to Care for the Battery
- Tesla’s iPhone Moment — How the Powerwall will Change Global Energy Use
- Painting the Battery Green by giving it a Second Life
- Charging without Wires — A Solution or Laziness
- What everyone should know about Battery Chargers
- A Look at Cell Formats and how to Build a good Battery
- Battery Breakthroughs — Myth or Fact?
- Rapid-test Methods that No Longer Work
- Shipping Lithium-based Batteries by Air
- How to make Batteries more Reliable and Longer Lasting
- What causes Lithium-ion to die?
- Safety of Lithium-ion Batteries
- Recognizing Battery Capacity as the Missing Link
- Managing Batteries for Warehouse Logistics
- Caring for your Starter Battery
- Giving Batteries a Second Life
- How to Make Batteries in Medical Devices More Reliable
- Possible Solutions for the Battery Problem on the Boeing 787
- Impedance Spectroscopy Checks Battery Capacity in 15 Seconds
- How to Improve the Battery Fuel Gauge
- Examining Loading Characteristics on Primary and Secondary Batteries
-
Language Pool 4>
- BU-001: Compartir conocimiento sobre baterías
- BU-002: Introducción
- BU-003: Dedicatoria
- BU-104: Conociendo la Batería
- BU-302: Configuraciones de Baterías en Serie y Paralelo
-
Batteries in a Portable World book 4>
- Change-log of “Batteries in a Portable World,” 4th edition: Chapters 1 - 3
- Change-log of “Batteries in a Portable World,” 4th edition: Chapters 4 - 10