BU-304a: Safety Concerns with Li-ion
Safety of lithium-based batteries has attracted much media and legal attention. Any energy storage device carries a risk, as demonstrated in the 1800s when steam engines exploded and people got hurt. Carrying highly flammable gasoline in cars was a hot topic in the early 1900s. All batteries carry a safety risk, and battery makers are obligated to meet safety requirements; less reputable firms are known to make shortcuts and it’s “buyer beware!”
Lithium-ion is safe but with millions of consumers using batteries, failures are bound to happen. In 2006, a one-in-200,000 breakdown triggered a recall of almost six million lithium-ion packs. Sony, the maker of the lithium-ion cells in question, points out that on rare occasion microscopic metal particles may come into contact with other parts of the battery cell, leading to a short circuit within the cell.
Battery manufacturers strive to minimize the presence of metallic particles. The semiconductor industry has spent billions of dollars to find ways in reducing particles that reduce the yield in wafers. Advanced cleanrooms are Class 10 in which 10,000 particles larger than 0.1µm per cubic meter are present (ISO 4 under ISO 14644 and ISO 14698). In spite of this high cleanliness, particle defects still occur in semiconductor wafers. Class 10 reduces the particles count but does not fully eliminate them.
Battery manufacturers may use less stringently controlled cleanrooms than the semiconductor industry. While a non-functioning semiconductor simply ends up in the garbage bin, a compromised Li-ion can make its way into the workforce undetected and deteriorate without knowing. Resulting failures are especially critical with the thinning of the separators to increase the specific energy.
Cells with ultra-thin separators of 24µm or less (24-thousandth of an mm) are more susceptible to impurities than the older designs with lower Ah ratings. Whereas the 1,350 mAh cell in the 18650 package could tolerate a nail penetration test, the high-density 3,400 mAh can ignite when performing the same test. (See BU-306: What is the Function of the Separator?) New safety standards direct how batteries are used, and the UL1642 Underwriters Laboratories (UL) test no longer mandates nail penetration for safety acceptance of lithium-based batteries.
To verify the safety of a new cell, a manufacturer may release 1 million samples into a workforce on observation. The cell is approved for the use of critical missions, such as medical, if no failure occurs in one year that could compromise safety. Similar field-testing is also common with pharmaceutical products.
Li-ion using conventional metal oxides is nearing its theoretical limit on specific energy. Rather than optimizing capacity, battery makers are improving manufacturing methods to enhance safety and increase calendar life. The real problem lies when on rare occasions an electrical short develops inside the cell. The external protection peripherals are ineffective to stop a thermal runaway once in progress. The batteries recalled in 2006 had passed the UL safety requirements — yet they failed under normal use with appropriate protection circuits.
There are two basic types of battery failures. One occurs at a predictable interval-per-million and is connected with a design flaw involving the electrode, separator, electrolyte or processes. These defects often involve a recall to correct a discovered flaw. The more difficult failures are random events that do not point to a design flaw. It may be a stress event like charging at sub-freezing temperature, vibration, or a fluke incident that is comparable to being hit by a meteor.
Let’s examine the inner workings of the cell more closely. A mild short will only cause elevated self-discharge and the heat buildup is minimal because the discharging power is very low. If enough microscopic metallic particles converge on one spot, a sizable current begins to flow between the electrodes of the cell, and the spot heats up and weakens. As a small water leak in a faulty hydro dam can develop into a torrent and take a structure down, so too can heat buildup damage the insulation layer in a cell and cause an electrical short. The temperature can quickly reach 500°C (932°F), at which point the cell catches fire or it explodes. This thermal runaway that occurs is known as “venting with flame.” “Rapid disassembly” is the preferred term by the battery industry.
Uneven separators can also trigger cell failure. Poor conductivity due to dry areas increases the resistance, which can generate local heat spots that weaken the integrity of the separator. Heat is always an enemy of the battery.
Most major Li-ion cell manufacturer x-ray every single cell as part of automated quality control. Software examines anomalies such as bent tabs or crushed jelly rolls. This is the reason why Li-ion batteries are so safe today, but such careful manufacturing practices may only be offered with recognized brands.
Why Batteries Fail
Quality lithium-ion batteries are safe if used as intended. However, a high number of heat and fire failures had been reported in consumer products that use non-certified batteries, and the hoverboard is an example. This may have been solved with the use of certified Li-ion on most current models. A UL official at a meeting in the Washington, D.C. area said that no new incident of overheating or fire had been reported since Li-ion in hoverboards was certified. Fires originating in the Samsung Galaxy Note 7 were due to a manufacturing defect that had been solved. The main-ship battery in the Boeing 787 Dreamliner also had defects that were resolved.
Incorrect uses of all batteries are excessive vibration, elevated heat and charging Li-ion below freezing. (See BU-410: Charging at High and Low Temperature) Li-ion and lead acid batteries cannot be fully discharged and must be stored with a remaining charge. While nickel-based batteries can be stored in a fully discharged state with no apparent side effect, Li-ion must not dip below 2V/cell for any length of time. Copper shunts form inside the cells that can lead to elevated self-discharge or a partial electrical short. If recharged, the cells might become unstable, causing excessive heat or showing other anomalies.
Heat combined with a full charge is said to induce more stress to Li-ion than regular cycling. Keep the battery and a device away from sun exposure and store in a cool place at a partial charge. Exceeding the recommended charge current by ultra-fast changing also harms Li-ion. Nickel-cadmium is the only chemistry that accepts ultra-fast charging with minimal stress. (See BU-401a: Fast and Ultra-fast Chargers)
Li-ion batteries that have been exposed to stresses may function normally but they become more sensitive to mechanical abuse. The liability for a failed battery goes to the manufacturer even if the fault may have been caused by improper use and handling. This worries the battery manufacturers and they go the extra mile to make their products safe. Treat the battery as if it were a living organism by preventing excess stress.
With more than a billion mobile phones and computers used in the world every day, the number of accidents is small. By comparison, the National Oceanic and Atmospheric Administration say that your chance of being struck by lightning in the course of a lifetime is about 1 in 13,000. Lithium-ion batteries have a failure rate that is less than one in a million. The failure rate of a quality Li-ion cell is better than 1 in 10 million.
Industrial batteries, such as those used for power tools, are generally more rugged than those in consumer products. Besides solid construction, power tool batteries are maximized for power delivery and less on energy for long runtimes. Power Cells have a lower Ah rating than Energy Cells and are in general more tolerant and safer if abused.
Battery Safety in Public addresses concerns with consumer batteries. One of the most accident-prone batteries is Li-ion in an 18650 cell with an unfamiliar brand name. These batteries made available for vaping do not have the same quality and safety as a recognized brand name. Li-ion is safe if made by a reputable manufacturer, but there have been a number fires and injuries with cells that developed defects and caught fire while carrying in clothing and while traveling. An onboard fire forced a WestJet plane to return to the airport in 2018 soon after takeoff. The burning e-cigarette battery was illegally placed in baggage as spare and checked in. The plane’s cargo bay is not accessible when in flight and a burning battery requires an unscheduled landing. The U.S. Federal Aviation Administration (FAA) recorded 206 incidents involving Li-ion batteries between 1991 and 2018.
There are also safety concerns with the electric vehicle. However, statistics shows that EVs produce fewer fires compared to vehicles with the internal combustion engine (ICE) per billion kilometers driven. According to the National Fire Protection Association (NFPA), over 400,000 ICE powered cars burned down in the 1980s. Today, 90 fires per one billion with ICE vehicles are considered normal; reports say that Tesla had only two fires per one billion driven kilometer.
What to Do When a Battery Overheats or Catches Fire
If a Li-ion battery overheats, hisses or bulges, immediately move the device away from flammable materials and place it on a non-combustible surface. If at all possible, remove the battery and put it outdoors to burn out. Simply disconnecting the battery from charge may not stop its destructive path.
A small Li-ion fire can be handled like any other combustible fire. For best result use a foam extinguisher, CO2, ABC dry chemical, powdered graphite, copper powder or soda (sodium carbonate). If the fire occurs in an airplane cabin, the FAA instructs flight attendants to use water or soda pop. Water-based products are most readily available and are appropriate since Li-ion contains very little lithium metal that reacts with water. Water also cools the adjacent area and prevents the fire from spreading. Research laboratories and factories also use water to extinguish Li-ion battery fires.
Crew can’t access the cargo areas of a passenger aircraft during flight. To assure safety in case of a fire, planes rely on fire suppression systems. Halon is a common fire suppressant, but this agent may not be sufficient to extinguish a Li-ion fire in the cargo bay. FAA tests found that the anti-fire halon gas installed in airline cargo areas can’t extinguish a battery fire that combines with other highly flammable material, such as the gas in an aerosol can or cosmetics commonly carried by travelers. However, the system prevents the blaze from spreading to adjacent flammable material such as cardboard or clothing.
With the increased use of Li-ion batteries, improved methods to extinguish lithium fires have been developed. The Aqueous Vermiculite Dispersion (AVD) fire extinguishing agent disperses chemically exfoliated vermiculite in the form of a mist that provides advantages over existing products. AVD fire extinguishers are available in a 400ml aerosol can for a small fire; AVD canister for warehouses and factories; a 50 liter AVD trolley system for larger fires, and a modular system that can be carried on a pickup truck.
Extover® is another fire extinguishing medium that effectively suppresses and smothers burning Li-ion batteries to minimize damage to the surrounding area through isolation of the fire source. The lightweight and free-flowing glass aggregate can be applied to a burning battery by hand, bucket, or shovel. Grain sizes vary from 0.04mm to 2mm to suit different applications. Extover® allows the battery to safely burn out with a homogenous covering because a flaming Li-ion battery cannot be easily extinguished. Extover® does not contain chemical agents, is made from 100% post-consumer recycled content, and is suitable for small and large batteries. The material can be reused if clean.
A readily-available and effective fire retardant is sand kept in a fire-proof bucked. In case of fire, the flaming battery is moved into the bucked and covered with sand to allow a controlled burn-out. The sand can also be heaved over the hot battery to prevent the fire from spreading. Sand is about three-times heavier than Extover® made from post-consumer glass.
A large Li-ion fire, such as in an EV, may need to burn out. Water with copper material can be used, but this may not be available and is costly for fire halls. Increasingly, experts advise using water even with large Li-ion fires. Water lowers combustion temperature but is not recommended for battery fires containing lithium-metal.
Research by IdTechEx reveals that 17% of EV fires occur during regular driving; 25% when charging; 20% in a crash; and 4% when unduly exposes the battery to air or water. The report says EV fires are more severe than with conventional ICE vehicles. A Tesla Model S fire required nearly 30,000 gallons (over 100,000 liters) of water to extinguish the fire due to reigniting and continuously burning for four hours. By comparison, a typical car fire with ICE engine can be extinguished with about 300 gallons (>1,000 liters) of water. Remedies to EV fires are often software changes to lower the battery capacity to 90%. There have also been rare manufacturing defects in cells. IDTechEx expects tighter regulations in design with the use of more fire-retardant materials.
When encountering a fire with a lithium-metal battery, only use a Class D fire extinguisher. Lithium-metal contains plenty of lithium that reacts with water and makes the fire worse. As the number of EVs grows, so must the methods to extinguish such fires.
| CAUTION | Do not use a Class D fire extinguisher to put out other types of fires; make certain regular extinguishers are also available. With all battery fires, allow ample ventilation while the battery burns itself out. |
During a thermal runaway, the high heat of the failing cell inside a battery pack may propagate to the next cells, causing them to become thermally unstable also. A chain reaction can occur in which each cell disintegrates on its own timetable. A pack can thus be destroyed in a few seconds or over several hours as each cell is being consumed. To increase safety, packs should include dividers to protect the failing cell from spreading to the neighboring one. Figure 1 shows a laptop that was damaged by a faulty Li-ion battery.
Figure 1: Li-ion battery suspected to have destroyed the laptop [1]
The owner says the laptop popped, hissed, sizzled and began filling the room with smoke.
The gas released by a venting Li-ion cell is mainly carbon dioxide (CO2). Other gases that form through heating are vaporized electrolyte consisting of hydrogen fluoride (HF) from 20–200mg/Wh, and phosphoryl fluoride (POF3) from 15–22mg/Wh. Burning gases also include combustion products and organic solvents.
The knowledge on the toxicity of burning electrolyte is limited and toxicity can be higher than with regular combustibles. Ventilate the room and vacate area if smoke and gases are present. Gas and smoke in a confined area such as an aircraft, submarine and mine shaft will present a potential health risk.
While lithium-based batteries are heavily studied for safety, nickel- and lead-based batteries also cause fires and are being recalled. The reasons are faulty separators resulting from aging, rough handling, excessive vibration and high-temperature. Lithium-ion batteries have become very safe and heat-related failures occur rarely when used correctly.
Definition
Hydrogen fluoride (HF): a colorless gas or liquid substance. It is the principal source of fluorine, a feedstock for pharmaceuticals, polymers (Teflon) and assisting petrochemical industries. Hydrogen fluoride is a highly dangerous gas, forming corrosive and penetrating hydrofluoric acid with moisture. In large quantities, gas can cause blindness by destruction of the corneas.
Phosphoryl fluoride (POF3): a colorless gas that hydrolyzes rapidly.
Lithium hexafluorophosphate (LiPF6): an inorganic compound in the form of white crystalline powder serving as electrolyte in Li-ion batteries.
Simple Guidelines for Using Lithium-ion Batteries
A failing Li-ion begins to hiss, bulge and leak electrolyte.
The electrolyte consists of lithium salt in an organic solvent (lithium hexafluorophosphate) and is highly flammable. Burning electrolyte can ignite combustible material in close proximity.
Dowse Li-ion fire with water or use a regular fire extinguisher. Only use a Class D fire extinguisher for lithium-metal fires because of the reaction of water with lithium. (Li-ion contains little lithium metal reacting with water.)
If a Class D extinguisher is not available, douse a lithium-metal fire with water to prevent the fire from spreading.
For best results dowsing a Li-ion fire, use a foam extinguisher, CO2, ABC dry chemical, powdered graphite, copper powder or soda (sodium carbonate) as you would extinguish other combustible fires. Reserve the Class D extinguishers for lithium-metal fires only.
If the fire of a burning lithium-ion battery cannot be extinguished, allow the pack to burn in a controlled and safe way.
Be aware of cell propagation as each cell might be consumed on its own time table when hot. Place a seemingly burned-out pack outside for a time.
References
[1] Source: Shmuel De-Leon
Last Updated: 22-Feb-2022
Batteries In A Portable World
The material on Battery University is based on the indispensable new 4th edition of "Batteries in a Portable World - A Handbook on Rechargeable Batteries for Non-Engineers" which is available for order through Amazon.com.
Find An Article
Table of Contents
-
Introduction 4>
- BU-001: Sharing Battery Knowledge
- BU-002: Introduction
- BU-003: Dedication
-
Crash Course on Batteries 4>
- BU-101: When Was the Battery Invented?
- BU-102: Early Innovators
- BU-103: Global Battery Markets
- BU-103a: Battery Breakthroughs: Myth or Fact?
- BU-104: Getting to Know the Battery
- BU-104a: Comparing the Battery with Other Power Sources
- BU-104b: Battery Building Blocks
- BU-104c: The Octagon Battery – What makes a Battery a Battery
- BU-105: Battery Definitions and what they mean
- BU-106: Advantages of Primary Batteries
- BU-106a: Choices of Primary Batteries
- BU-107: Comparison Table of Secondary Batteries
-
Battery Types 4>
- BU-201: How does the Lead Acid Battery Work?
- BU-201a: Absorbent Glass Mat (AGM)
- BU-201b: Gel Lead Acid Battery
- BU-202: New Lead Acid Systems
- BU-203: Nickel-based Batteries
- BU-204: How do Lithium Batteries Work?
- BU-205: Types of Lithium-ion
- BU-206: Lithium-polymer: Substance or Hype?
- BU-208: Cycling Performance
- BU-209: How does a Supercapacitor Work?
- BU-210: How does the Fuel Cell Work?
- BU-210a: Why does Sodium-sulfur need to be heated
- BU-210b: How does the Flow Battery Work?
- BU-211: Alternate Battery Systems
- BU-212: Future Batteries
- BU-214: Summary Table of Lead-based Batteries
- BU-215: Summary Table of Nickel-based Batteries
- BU-216: Summary Table of Lithium-based Batteries
- BU-217: Summary Table of Alternate Batteries
- BU-218: Summary Table of Future Batteries
-
Packaging and Safety 4>
- BU-301: A look at Old and New Battery Packaging
- BU-301a: Types of Battery Cells
- BU-302: Series and Parallel Battery Configurations
- BU-303: Confusion with Voltages
- BU-304: Why are Protection Circuits Needed?
- BU-304a: Safety Concerns with Li-ion
- BU-304b: Making Lithium-ion Safe
- BU-304c: Battery Safety in Public
- BU-305: Building a Lithium-ion Pack
- BU-306: What is the Function of the Separator?
- BU-307: How does Electrolyte Work?
- BU-308: Availability of Lithium
- BU-309: How does Graphite Work in Li-ion?
- BU-310: How does Cobalt Work in Li-ion?
- BU-311: Battery Raw Materials
-
Charge Methods 4>
- BU-401: How do Battery Chargers Work?
- BU-401a: Fast and Ultra-fast Chargers
- BU-402: What Is C-rate?
- BU-403: Charging Lead Acid
- BU-404: What is Equalizing Charge?
- BU-405: Charging with a Power Supply
- BU-406: Battery as a Buffer
- BU-407: Charging Nickel-cadmium
- BU-408: Charging Nickel-metal-hydride
- BU-409: Charging Lithium-ion
- BU-409a: Why do Old Li-ion Batteries Take Long to Charge?
- BU-409b: Charging Lithium Iron Phosphate
- BU-410: Charging at High and Low Temperatures
- BU-411: Charging from a USB Port
- BU-412: Charging without Wires
- BU-413: Charging with Solar, Turbine
- BU-413a: How to Store Renewable Energy in a Battery
- BU-414: How do Charger Chips Work?
- BU-415: How to Charge and When to Charge?
-
Discharge Methods 4>
- BU-501: Basics about Discharging
- BU-501a: Discharge Characteristics of Li-ion
- BU-502: Discharging at High and Low Temperatures
- BU-503: Determining Power Deliver by the Ragone Plot
- BU-504: How to Verify Sufficient Battery Capacity
-
"Smart" Battery 4>
- BU-601: How does a Smart Battery Work?
- BU-602: How does a Battery Fuel Gauge Work?
- BU-603: How to Calibrate a “Smart” Battery
- BU-603a: Calibrating SMBus Batteries with Impedance Tracking
- BU-604: How to Process Data from a “Smart” Battery
- Testing and Calibrating Smart Batteries
-
From Birth to Retirement 4>
- BU-701: How to Prime Batteries
- BU-702: How to Store Batteries
- BU-703: Health Concerns with Batteries
- BU-704: How to Transport Batteries
- BU-704a: Shipping Lithium-based Batteries by Air
- BU-704b: CAUTION & Overpack Labels
- BU-704c: Class 9 Label
- BU-704d: NFPA 704 Rating
- BU-704e: Battery for Personal and Fleet Use
- BU-705: How to Recycle Batteries
- BU-705a: Battery Recycling as a Business
- BU-706: Summary of Do's and Don'ts
-
How To Prolong Battery Life 4>
-
General 4>
- BU-801: Setting Battery Performance Standards
- BU-801a: How to Rate Battery Runtime
- BU-801b: How to Define Battery Life
- BU-802: What Causes Capacity Loss?
- BU-802a: How does Rising Internal Resistance affect Performance?
- BU-802b: What does Elevated Self-discharge Do?
- BU-802c: How Low can a Battery be Discharged?
- BU-803: Can Batteries Be Restored?
- BU-803a: Cell Matching and Balancing
- BU-803b: What causes Cells to Short?
- BU-803c: Loss of Electrolyte
-
Lead Acid 4>
- BU-804: How to Prolong Lead-acid Batteries
- BU-804a: Corrosion, Shedding and Internal Short
- BU-804b: Sulfation and How to Prevent it
- BU-804c: Acid Stratification and Surface Charge
- BU-805: Additives to Boost Flooded Lead Acid
- BU-806: Tracking Battery Capacity and Resistance as part of Aging
- BU-806a: How Heat and Loading affect Battery Life
-
Nickel-based 4>
- BU-807: How to Restore Nickel-based Batteries
- BU-807a: Effect of Zapping
-
Lithium-ion 4>
- BU-808: How to Prolong Lithium-based Batteries
- BU-808a: How to Awaken a Sleeping Li-ion
- BU-808b: What Causes Li-ion to Die?
- BU-808c: Coulombic and Energy Efficiency with the Battery
- BU-809: How to Maximize Runtime
- BU-810: What Everyone Should Know About Aftermarket Batteries
- BU-811: Assuring Minimum Operational Reserve Energy (MORE)
-
Battery Testing and Monitoring 4>
- BU-901: Fundamentals in Battery Testing
- BU-901b: How to Measure the Remaining Useful Life of a Battery
- BU-902: How to Measure Internal Resistance
- BU-902a: How to Measure CCA
- BU-903: How to Measure State-of-charge
- BU-904: How to Measure Capacity
- BU-905: Testing Lead Acid Batteries
- BU-905a: Testing Starter Batteries in Vehicles
- BU-905b: Knowing when to Replace a Starter Battery
- BU-906: Testing Nickel-based Batteries
- BU-907: Testing Lithium-based Batteries
- BU-907a: Battery Rapid-test Methods
- BU-907b: Advancements in Battery Testing
- BU-907c: Cloud Analytics in Batteries
- BU-908: Battery Management System (BMS)
- BU-909: Battery Test Equipment
- BU-910: How to Repair a Battery Pack
- BU-911: How to Repair a Laptop Battery
- BU-915: Testing Battery with EIS
- BU-916: Deep Battery Diagnostics
- BU-917: In Search for Performance Transparency with Batteries
- BU-918: Battery Endurance Plan
-
Amazing Value of a Battery 4>
- BU-1001: Batteries in Industries
- BU-1002: Electric Powertrain, then and now
- BU-1002a: Hybrid Electric Vehicles and the Battery
- BU-1002b: Environmental Benefit of the Electric Powertrain
- BU-1003: Electric Vehicle (EV)
- BU-1003a: Battery Aging in an Electric Vehicle (EV)
- BU-1004: Charging an Electric Vehicle
- BU-1005: Does the Fuel Cell-powered Vehicle have a Future?
- BU-1006: Cost of Mobile and Renewable Power
- BU-1007: Net Calorific Value
- BU-1008: Working towards Sustainability
- BU-1009: Battery Paradox - Afterword
-
Information 4>
- BU-1101: Glossary
- BU-1102: Abbreviations
- BU-1103: Bibliography
- BU-1104: About the Author
- BU-1105: About Cadex (Sponsor)
- BU-1106: Author's Creed
- BU-1107: Disclaimer
- BU-1108: Copyright
-
Learning Tools 4>
- BU-1501 Battery History
- BU-1502 Basics about Batteries
- BU-1503 How to Maintain Batteries
- BU-1504 Battery Test & Analyzing Devices
- BU-1505 Short History of Cadex
-
Battery Articles 4>
- Perception of a Battery Tester
- Green Deal
- Risk Management in Batteries
- Predictive Test Methods for Starter Batteries
- Why Mobile Phone Batteries do not last as long as an EV Battery
- Battery Rapid-test Methods
- How to Charge Li-ion with a Parasitic Load
- Ultra-fast Charging
- Assuring Safety of Lithium-ion in the Workforce
- Diagnostic Battery Management
- Tweaking the Mobile Phone Battery
- Battery Test Methods
- Battery Testing and Safety
- How to Make Battery Performance Transparent
- Battery Diagnostics On-the-fly
- Making Battery State-of-health Transparent
- Batteries will eventually die, but when and how?
- Why does Pokémon Go rob so much Battery Power?
- How to Care for the Battery
- Tesla’s iPhone Moment — How the Powerwall will Change Global Energy Use
- Painting the Battery Green by giving it a Second Life
- Charging without Wires — A Solution or Laziness
- What everyone should know about Battery Chargers
- A Look at Cell Formats and how to Build a good Battery
- Battery Breakthroughs — Myth or Fact?
- Rapid-test Methods that No Longer Work
- Shipping Lithium-based Batteries by Air
- How to make Batteries more Reliable and Longer Lasting
- What causes Lithium-ion to die?
- Safety of Lithium-ion Batteries
- Recognizing Battery Capacity as the Missing Link
- Managing Batteries for Warehouse Logistics
- Caring for your Starter Battery
- Giving Batteries a Second Life
- How to Make Batteries in Medical Devices More Reliable
- Possible Solutions for the Battery Problem on the Boeing 787
- Impedance Spectroscopy Checks Battery Capacity in 15 Seconds
- How to Improve the Battery Fuel Gauge
- Examining Loading Characteristics on Primary and Secondary Batteries
-
Language Pool 4>
- BU-001: Compartir conocimiento sobre baterías
- BU-002: Introducción
- BU-003: Dedicatoria
- BU-104: Conociendo la Batería
- BU-302: Configuraciones de Baterías en Serie y Paralelo
-
Batteries in a Portable World book 4>
- Change-log of “Batteries in a Portable World,” 4th edition: Chapters 1 - 3
- Change-log of “Batteries in a Portable World,” 4th edition: Chapters 4 - 10