BU-1006: Cost of Mobile and Renewable Power
Lifting off in a large airplane is exhilarating. At a full weight of almost 400 tons, the Boeing 747 requires 90 megawatts of power to get airborne. Take-off is the most demanding part of a flight and when reaching cruising altitude the power consumption decreases to roughly half.
Powerful engines were also used to propel the mighty Queen Mary that was launched in 1934. The 81,000-ton ocean liner measuring 300 meters (1,000ft) in length was powered by four steam turbines producing a total power of 160,000hp (120 megawatts). The ship carried 3,000 people and traveled at a speed of 28.5 knots (52km/h). Queen Mary is now a museum in Long Beach, California.
Table 1 illustrates man’s inventiveness in the quest for power by comparing an ox of prehistoric times with newer energy sources made available during the Industrial Revolution to today’s super engines, with seemingly unlimited power.
| Since | Type of power source | Generated power |
|---|---|---|
| 3000 BC | Ox pulling a load | 0.5hp |
| 350 BC | Vertical waterwheel | 3hp |
| 1800 | Watt's steam engine | 40hp |
| 1837 | Marine steam engine | 750hp |
| 1900 | Rail steam engine | 12,000hp |
| 1936 | Queen Mary ocean liner | 160,000hp |
| 1949 | Cadillac car | 160hp |
| 1969 | Boeing 747 jet airplane | 100,000hp |
| 1974 | Nuclear power plant | 1,520,000hp |
Table 1: Ancient and modern power sources
Large propulsion systems are only feasible with the internal combustion engines (ICE), and fossil fuel serves as a cheap and plentiful energy resource. Low energy-to-weight ratio in terms of net calorific value (NCV) puts the battery against the mighty ICE like David and Goliath. The battery is the weaker vessel and is sensitive to extreme heat and cold; it also has a relatively short life span.
While fossil fuel delivers an NCV of 12,000Wh/kg, Li-ion provides only between 70Wh/kg and 260Wh/kg depending on chemistry; less with most other systems. Even at a low efficiency of about 30 percent, the ICE outperforms the best battery in terms of energy-to-weight ratio. The battery capacity would need to increase 20-fold before it could compete head-to-head with fossil fuel.
Another limitation of battery propulsion over fossil fuel is fuel by weight. While the weight diminishes when being consumed, the battery carries the same deadweight whether fully charged or empty. This puts limitations on EV driving distance and would make the electric airplane impractical. Furthermore, the ICE delivers full power at freezing temperatures, runs in hot climates, and continues to perform well with advancing age. This is not the case with a battery as each subsequent discharge delivers slightly less energy than the previous cycle.
Power from Primary Batteries
Energy from a non-rechargeable battery is one of the most expensive forms of electrical supply in terms of cost per kilowatt-hours (kWh). Primary batteries are used for low-power applications such as wristwatches, remote controls, electric keys and children’s toys. Military in combat, light beacons and remote repeater stations also use primaries because charging is not practical. Table 2 estimates the capability and cost per kWh of primary batteries.
| AAA cell | AA cell | C cell | D cell | 9 Volt | |
|---|---|---|---|---|---|
| Capacity (alkaline) | 1,150mAh | 2,850mAh | 7,800mAh | 17,000mAh | 570mAh |
| Energy (single cell) | 1.725Wh | 4.275Wh | 11.7Wh | 25.5Wh | 5.13Wh |
| Cost per cell (US$) | $1.00 | $0.75 | $2.00 | $2.00 | $3.00 |
| Cost per kWh (US$) | $580 | $175 | $170 | $78 | $585 |
Table 2: Capacity and cost comparison of primary alkaline cells
One-time use makes energy stored in primary batteries expensive; cost decreases with larger battery size.
Power from Secondary Batteries
Electric energy from rechargeable batteries is more economical than with primaries, however, the cost per kWh is not complete without examining the total cost of ownership. This includes cost per cycle, longevity, eventual replacement and disposal. Table 3 compares Lead acid, NiCd, NiMH and Li-ion.
| Lead acid | NiCd | NiMH | Li ion | |
|---|---|---|---|---|
| Specific energy (Wh/kg) | 30–50 | 45–80 | 60–120 | 100–250 |
| Cycle life | Moderate | High | High | High |
| Temperature performance | Low when cold | -50°C to 70°C | Reduced when cold | Low when cold |
| Applications | UPS with infrequent discharges | Rugged, high/low temperature | HEV, UPS with frequent discharges | EV, UPS with frequent discharges |
| Cost per kWh ($US) | $100-200 | $300-600 | $300-600 | $300–1,000 ~ $100(2021) |
Table 3: Energy and cost comparison of rechargeable batteries
Although Li-ion is more expensive than Lead acid, the cycle cost may be less. NiCd operates at extreme temperatures, has the best cycle life and accepts ultra-fast charge with little stress.
Power from Other Sources
To reduce the fossil fuel consumption and to lower emissions, governments and the private sector are studying alternate energy sources. Table 4 compares the cost to generate 1kW of power that includes initial investment, fuel consumption, maintenance and eventual replacement.
| Fuel type | Equipment to generate 1kW | Life span | Cost of fuel per kWh | Total cost per kWh |
|---|---|---|---|---|
| Li-ion Powertrain | $500/kW (20kW battery costing $10,000) | 2,500h (repl. cost $0.40/kW) | $0.20 |
$0.60 ($0.40 + $0.20) |
| ICE in vehicle | $30/kW ($3,000/100kW) | 4,000h (repl. cost $0.01/kW) | $0.33 |
$0.34 ($0.33 + $0.01) |
|
Fuel cell -portable - mobile - stationary |
$3,000–7,500 |
2,000hg 4,000h 40,000h |
$0.35 -> -> -> |
$1.85 – 4.10 $1.10 – 2.25 $0.45 – 0.55 |
| Solar cell | $12,000, 5kW system | 25 years | $0 | ~$0.10* |
|
Electricity electric grid |
All inclusive | All inclusive |
$0.20 (average) |
$0.20 |
Table 4: Cost of generating 1kW of energy
Estimations include the initial investment, fuel consumption, maintenance and replacement of the equipment. Grid electricity is lowest.
* Amortization of investment yielding 200 days of 5h/day sun; declining output with age not included.
Power from the electrical utility grid is most cost-effective. Consumers pay between $0.06 and $0.40US per kWh, delivered with no added maintenance cost or the need to replace aging power-generating machinery; the supply is continuous. (The typical daily energy consumption per household in the West is 25kW.)
The supply of cheap electricity changes when energy must be stored in a battery, as is the case with a solar system that is backed up by a battery and in the electric powertrain. High battery cost and a relatively short life can double the electrical cost if supplied by a battery. Gasoline (and equivalent) is the most economical solution for mobility.
The fuel cell is most effective in converting fuel to electricity, but high equipment costs make this power source expensive in terms of cost per kWh. In virtually all applications, power from the fuel cell is considerably more expensive than from conventional methods.
Our bodies also consume energy, and an active man requires 3,500 calories per day to stay fit. This relates to roughly 4,000 watts in a 24-hour day (1 food Calorie* = 1.16 watt-hour). Walking propels a person about 40km (25 miles) per day, and a bicycle increases the distance by a factor of four to 160km (100 miles). Eating two potatoes and a sausage for lunch propels a bicyclist for the afternoon, covering 60km (37 miles, a past-time activity I often do. Not all energy goes to the muscles alone; the brain consumes about 20 percent of our intake. The human body is amazingly efficient in converting food to energy; one would think that the potato and sausage lunch could hardly keep a laptop going for that long. Table 5 provides the stored energies of calories, proteins and fat in watt-hours and joules.
* A calorie specifies the energy level food provides to the body. Kilocalories on food packages and related nutrition are normally published in “Calories with capital “C”. Example: 800 Calories on the food label are in essence 800 kilocalories. Table 5 below uses the official standard of 1.16mWh/cal.
| Calories | Milliwatt-hour | Joule | |
|---|---|---|---|
| Food calorie | 1 | 1.16 | 4,184 |
| 1 gram of protein | 4 | 4.64 | 16,736 |
| 1 gram of carbohydrate | 4 | 4.64 | 16,736 |
| 1 gram of body fat | 9 | 10.46 | 37,656 |
Table 5: Relationship of calorie to watt-hours
The body stores store energy in the form for fat containing high net calorific value.
Table 6 compares the estimated power and energy per passenger/kilometer for a loaded Boeing 747, the retired Queen Mary ocean liner, a gas-guzzling SUV, a fit person on a bicycle, and walking on foot.
| Function | Boeing 747 jumbo jet | Ocean liner Queen Mary | SUV or large car | Bicycle (Bike & rider) | On foot |
|---|---|---|---|---|---|
| Full weight | 369 tons | 81,000 tons | 2.5 tons | 100kg (220lb) | 80kg (176lb) |
| Cruising speed | 900km/h (560 mph) | 52km/h (32mph) | 100km/h (62mph) | 20km/h (12.5mph) | 5km/h (3.1mph) |
| Maximum power | 77,000kW (100,000hp) | 120,000kW (160,000hp) | 200kW (275hp) | 2,000W (2.7hp) | 2,000W (2.7hp) |
| Power at cruising | 65,000kW (87,000hp) | 90,000 kW (120,000hp) | 130 kW (174hp) | 80 W (0.1hp) | 280 W (0.38hp) |
| Passengers | 450 | 3,000 | 4 | 1 | 1 |
| Power per passenger | 140kW 580kJ* | 40kW 2,800kJ* | 50kW 1,800kJ* | 80W 14.4kJ* | 280W 200kJ* |
Table 6: Power needs of different transportation modes
Air travel consumes the least per passenger-km in high-speed transportation; the boat is efficient for slow tonnage transport, but the absolute lowest energy consumption is the bicycle.
* 1 joule is the energy of 1A at 1V for 1 second, or 1 watt times second.
4.186 joules raise the temperature of 1g of water by 1 Celsius; 1,000 joules are 0.277Wh.
The bicycle is by far the most effective form of transportation. Comparing a bicycle to a car, a cyclist would only consume 0.4 liter of fuel per 100km (630mpg). Walking is also efficient; it uses about 1 liter per 100km (228mpg). The problem with self-powered propulsion is the limited travel range before fatigue sets in.
In terms of energy usage, cars are one of the least efficient modes of transportation. Most ICEs utilize only 25 percent of the net calorific value from the fuel for propulsion. The math looks even worse when including vehicle weight and a single passenger, the driver. The ratio of machine to man is about ten-to-one, higher on a large vehicle. When accelerating a 1.5-ton vehicle, less than 2 percent of the energy moves the 75kg (165 lb) driver, his briefcase and his lunch bag; 98 percent goes to heat and friction. Even a modern jet plane has better fuel efficiency than a car. A loaded Airbus 340 gets 3.4l/100km (70mpg), cruising at 950km/h (594mph).
Trains are one of the most efficient modes of transportation. The 36km Yamanote circle line, connecting major urban centers in Tokyo carries 3.5 million passengers per day. During rush hour, the 11-car train runs every 150 seconds. Such a passenger volume would be unthinkable by private cars on city streets.
Modern trains are less intrusive than freeways to move people and goods. Building efficient public transportation systems would give cities back to the people who are the rightful owners. The most desirable cities were built before the arrival of the car as designers had the well-being of people in mind. Trains are also economical to move freight. Transporting one ton of freight consumes only 0.65 liters of fuel per 100km (362mpg).
Last Updated: 20-May-2017
Batteries In A Portable World
The material on Battery University is based on the indispensable new 4th edition of "Batteries in a Portable World - A Handbook on Rechargeable Batteries for Non-Engineers" which is available for order through Amazon.com.
Find An Article
Table of Contents
-
Introduction 4>
- BU-001: Sharing Battery Knowledge
- BU-002: Introduction
- BU-003: Dedication
-
Crash Course on Batteries 4>
- BU-101: When Was the Battery Invented?
- BU-102: Early Innovators
- BU-103: Global Battery Markets
- BU-103a: Battery Breakthroughs: Myth or Fact?
- BU-104: Getting to Know the Battery
- BU-104a: Comparing the Battery with Other Power Sources
- BU-104b: Battery Building Blocks
- BU-104c: The Octagon Battery – What makes a Battery a Battery
- BU-105: Battery Definitions and what they mean
- BU-106: Advantages of Primary Batteries
- BU-106a: Choices of Primary Batteries
- BU-107: Comparison Table of Secondary Batteries
-
Battery Types 4>
- BU-201: How does the Lead Acid Battery Work?
- BU-201a: Absorbent Glass Mat (AGM)
- BU-201b: Gel Lead Acid Battery
- BU-202: New Lead Acid Systems
- BU-203: Nickel-based Batteries
- BU-204: How do Lithium Batteries Work?
- BU-205: Types of Lithium-ion
- BU-206: Lithium-polymer: Substance or Hype?
- BU-208: Cycling Performance
- BU-209: How does a Supercapacitor Work?
- BU-210: How does the Fuel Cell Work?
- BU-210a: Why does Sodium-sulfur need to be heated
- BU-210b: How does the Flow Battery Work?
- BU-211: Alternate Battery Systems
- BU-212: Future Batteries
- BU-214: Summary Table of Lead-based Batteries
- BU-215: Summary Table of Nickel-based Batteries
- BU-216: Summary Table of Lithium-based Batteries
- BU-217: Summary Table of Alternate Batteries
- BU-218: Summary Table of Future Batteries
-
Packaging and Safety 4>
- BU-301: A look at Old and New Battery Packaging
- BU-301a: Types of Battery Cells
- BU-302: Series and Parallel Battery Configurations
- BU-303: Confusion with Voltages
- BU-304: Why are Protection Circuits Needed?
- BU-304a: Safety Concerns with Li-ion
- BU-304b: Making Lithium-ion Safe
- BU-304c: Battery Safety in Public
- BU-305: Building a Lithium-ion Pack
- BU-306: What is the Function of the Separator?
- BU-307: How does Electrolyte Work?
- BU-308: Availability of Lithium
- BU-309: How does Graphite Work in Li-ion?
- BU-310: How does Cobalt Work in Li-ion?
- BU-311: Battery Raw Materials
-
Charge Methods 4>
- BU-401: How do Battery Chargers Work?
- BU-401a: Fast and Ultra-fast Chargers
- BU-402: What Is C-rate?
- BU-403: Charging Lead Acid
- BU-404: What is Equalizing Charge?
- BU-405: Charging with a Power Supply
- BU-406: Battery as a Buffer
- BU-407: Charging Nickel-cadmium
- BU-408: Charging Nickel-metal-hydride
- BU-409: Charging Lithium-ion
- BU-409a: Why do Old Li-ion Batteries Take Long to Charge?
- BU-409b: Charging Lithium Iron Phosphate
- BU-410: Charging at High and Low Temperatures
- BU-411: Charging from a USB Port
- BU-412: Charging without Wires
- BU-413: Charging with Solar, Turbine
- BU-413a: How to Store Renewable Energy in a Battery
- BU-414: How do Charger Chips Work?
- BU-415: How to Charge and When to Charge?
-
Discharge Methods 4>
- BU-501: Basics about Discharging
- BU-501a: Discharge Characteristics of Li-ion
- BU-502: Discharging at High and Low Temperatures
- BU-503: Determining Power Deliver by the Ragone Plot
- BU-504: How to Verify Sufficient Battery Capacity
-
"Smart" Battery 4>
- BU-601: How does a Smart Battery Work?
- BU-602: How does a Battery Fuel Gauge Work?
- BU-603: How to Calibrate a “Smart” Battery
- BU-603a: Calibrating SMBus Batteries with Impedance Tracking
- BU-604: How to Process Data from a “Smart” Battery
- Testing and Calibrating Smart Batteries
-
From Birth to Retirement 4>
- BU-701: How to Prime Batteries
- BU-702: How to Store Batteries
- BU-703: Health Concerns with Batteries
- BU-704: How to Transport Batteries
- BU-704a: Shipping Lithium-based Batteries by Air
- BU-704b: CAUTION & Overpack Labels
- BU-704c: Class 9 Label
- BU-704d: NFPA 704 Rating
- BU-704e: Battery for Personal and Fleet Use
- BU-705: How to Recycle Batteries
- BU-705a: Battery Recycling as a Business
- BU-706: Summary of Do's and Don'ts
-
How To Prolong Battery Life 4>
-
General 4>
- BU-801: Setting Battery Performance Standards
- BU-801a: How to Rate Battery Runtime
- BU-801b: How to Define Battery Life
- BU-802: What Causes Capacity Loss?
- BU-802a: How does Rising Internal Resistance affect Performance?
- BU-802b: What does Elevated Self-discharge Do?
- BU-802c: How Low can a Battery be Discharged?
- BU-803: Can Batteries Be Restored?
- BU-803a: Cell Matching and Balancing
- BU-803b: What causes Cells to Short?
- BU-803c: Loss of Electrolyte
-
Lead Acid 4>
- BU-804: How to Prolong Lead-acid Batteries
- BU-804a: Corrosion, Shedding and Internal Short
- BU-804b: Sulfation and How to Prevent it
- BU-804c: Acid Stratification and Surface Charge
- BU-805: Additives to Boost Flooded Lead Acid
- BU-806: Tracking Battery Capacity and Resistance as part of Aging
- BU-806a: How Heat and Loading affect Battery Life
-
Nickel-based 4>
- BU-807: How to Restore Nickel-based Batteries
- BU-807a: Effect of Zapping
-
Lithium-ion 4>
- BU-808: How to Prolong Lithium-based Batteries
- BU-808a: How to Awaken a Sleeping Li-ion
- BU-808b: What Causes Li-ion to Die?
- BU-808c: Coulombic and Energy Efficiency with the Battery
- BU-809: How to Maximize Runtime
- BU-810: What Everyone Should Know About Aftermarket Batteries
- BU-811: Assuring Minimum Operational Reserve Energy (MORE)
-
Battery Testing and Monitoring 4>
- BU-901: Fundamentals in Battery Testing
- BU-901b: How to Measure the Remaining Useful Life of a Battery
- BU-902: How to Measure Internal Resistance
- BU-902a: How to Measure CCA
- BU-903: How to Measure State-of-charge
- BU-904: How to Measure Capacity
- BU-905: Testing Lead Acid Batteries
- BU-905a: Testing Starter Batteries in Vehicles
- BU-905b: Knowing when to Replace a Starter Battery
- BU-906: Testing Nickel-based Batteries
- BU-907: Testing Lithium-based Batteries
- BU-907a: Battery Rapid-test Methods
- BU-907b: Advancements in Battery Testing
- BU-907c: Cloud Analytics in Batteries
- BU-908: Battery Management System (BMS)
- BU-909: Battery Test Equipment
- BU-910: How to Repair a Battery Pack
- BU-911: How to Repair a Laptop Battery
- BU-915: Testing Battery with EIS
- BU-916: Deep Battery Diagnostics
- BU-917: In Search for Performance Transparency with Batteries
- BU-918: Battery Endurance Plan
-
Amazing Value of a Battery 4>
- BU-1001: Batteries in Industries
- BU-1002: Electric Powertrain, then and now
- BU-1002a: Hybrid Electric Vehicles and the Battery
- BU-1002b: Environmental Benefit of the Electric Powertrain
- BU-1003: Electric Vehicle (EV)
- BU-1003a: Battery Aging in an Electric Vehicle (EV)
- BU-1004: Charging an Electric Vehicle
- BU-1005: Does the Fuel Cell-powered Vehicle have a Future?
- BU-1006: Cost of Mobile and Renewable Power
- BU-1007: Net Calorific Value
- BU-1008: Working towards Sustainability
- BU-1009: Battery Paradox - Afterword
-
Information 4>
- BU-1101: Glossary
- BU-1102: Abbreviations
- BU-1103: Bibliography
- BU-1104: About the Author
- BU-1105: About Cadex (Sponsor)
- BU-1106: Author's Creed
- BU-1107: Disclaimer
- BU-1108: Copyright
-
Learning Tools 4>
- BU-1501 Battery History
- BU-1502 Basics about Batteries
- BU-1503 How to Maintain Batteries
- BU-1504 Battery Test & Analyzing Devices
- BU-1505 Short History of Cadex
-
Battery Articles 4>
- Perception of a Battery Tester
- Green Deal
- Risk Management in Batteries
- Predictive Test Methods for Starter Batteries
- Why Mobile Phone Batteries do not last as long as an EV Battery
- Battery Rapid-test Methods
- How to Charge Li-ion with a Parasitic Load
- Ultra-fast Charging
- Assuring Safety of Lithium-ion in the Workforce
- Diagnostic Battery Management
- Tweaking the Mobile Phone Battery
- Battery Test Methods
- Battery Testing and Safety
- How to Make Battery Performance Transparent
- Battery Diagnostics On-the-fly
- Making Battery State-of-health Transparent
- Batteries will eventually die, but when and how?
- Why does Pokémon Go rob so much Battery Power?
- How to Care for the Battery
- Tesla’s iPhone Moment — How the Powerwall will Change Global Energy Use
- Painting the Battery Green by giving it a Second Life
- Charging without Wires — A Solution or Laziness
- What everyone should know about Battery Chargers
- A Look at Cell Formats and how to Build a good Battery
- Battery Breakthroughs — Myth or Fact?
- Rapid-test Methods that No Longer Work
- Shipping Lithium-based Batteries by Air
- How to make Batteries more Reliable and Longer Lasting
- What causes Lithium-ion to die?
- Safety of Lithium-ion Batteries
- Recognizing Battery Capacity as the Missing Link
- Managing Batteries for Warehouse Logistics
- Caring for your Starter Battery
- Giving Batteries a Second Life
- How to Make Batteries in Medical Devices More Reliable
- Possible Solutions for the Battery Problem on the Boeing 787
- Impedance Spectroscopy Checks Battery Capacity in 15 Seconds
- How to Improve the Battery Fuel Gauge
- Examining Loading Characteristics on Primary and Secondary Batteries
-
Language Pool 4>
- BU-001: Compartir conocimiento sobre baterías
- BU-002: Introducción
- BU-003: Dedicatoria
- BU-104: Conociendo la Batería
- BU-302: Configuraciones de Baterías en Serie y Paralelo
-
Batteries in a Portable World book 4>
- Change-log of “Batteries in a Portable World,” 4th edition: Chapters 1 - 3
- Change-log of “Batteries in a Portable World,” 4th edition: Chapters 4 - 10