Battery Diagnostics On-the-fly
Removing the “black-box” stigma by making performance transparent
Battery users imagine a battery pack being an energy storage device that resembles a fuel tank dispensing liquid fuel. For simplicity reasons, a battery can indeed be perceived as a vessel storing electrical energy; however, measuring energy flowing into an electrochemical device and then drawing it out again is far more complex than handling liquid fuel. While a hydraulic fuel gauge measures liquids moving in and out of a tank of known size, a battery fuel gauge reads units of current. Battery size is specified in ampere hours (Ah), and what makes estimating battery state-of-charge (SoC) and state-of-health (SoH) so challenging is an unsteady state; a battery loses capacity with each charge and leaks energy in the form of self-discharge.
The specified capacity of a new battery is (should be) 100%; replacement is typically at 80%. A standard fuel gauge only shows SoC; capacity is not revealed. A full charge lights up the entire SoC scale, even if the capacity has faded to 50% and delivers only half the runtime.
Figure 1: Fuel gauge.
The battery fuel gauge always shows “full” after charge even if the capacity has dropped in half.
Estimating battery SoC is commonly done by coulomb counting. The theory goes back 250 years when Charles-Augustin de Coulomb first established the “Coulomb Rule.” It consists of units of electric charge in which one coulomb (1C) equals one ampere (1A) for 1 second. Figure 2 illustrates the principle of in and outflowing currents representing coulomb counting.
Figure 2: Principle of a fuel gauge based on coulomb counting.
A circuit measures the in-and-out flowing energy; the stored energy represents state-of-charge. One coulomb (1C) equals one ampere (1A) per second. Discharging a battery at 1A for one hour equates to 3,600C.
Courtesy of Cadex
Coulomb counting should be flawless but tracking errors occur. If, for example, a battery was charged for 1 hour at 1 ampere, the same amount of energy should be available on discharge. No battery can do this. Inefficiencies in charge acceptance, especially towards the end of charge and particularly if fast-charged, reduces the energy efficiency. Losses also occur in storage and during discharge. The available energy is always less than what has been fed into the battery.
Coulomb counting becomes part of a battery management system (BMS) that also assists in controlling mobile phone and laptop batteries. Furthermore, a BMS keeps the battery voltage and current in check to maintain safety and prolong battery life.
The user of a new gadget is usually inclined to trust a fancy fuel gauge graphic. A false sense of security may develop but this trust is dashed when the runtimes get shorter with each charge as the device ages. For the casual user of a mobile phone or laptop, a fuel gauge error is only a mild irritant. The problem escalates with medical and military devices, as well as with drones and electric drivetrains that depend on precise range predictions.
To maintain fuel gauge accuracy, a smart battery should periodically be calibrated by discharging it until the “Low Battery” symbol appears on the device. This can be done in the device. A full cycle sets the respective flags as shows in Figure 3. A linear line forms between these two anchor points to allow reasonably accurate SoC estimations for a time.
Figure 3: Full-discharge and full-charge flags.
A full discharge sets the discharge flag, a full charge sets the charge flag.
Courtesy of Cadex
How often should a battery be calibrated? This depends on the application. A battery in continued use should be calibrated every 3 months or after 40 partial cycles. If the device applies a periodic full deep discharge, then calibration should not be needed. A user’s manual for an Apple iPad reads: “For proper reporting of SoC, be sure to go through at least one full charge/ discharge cycle per month.”
What happens if the battery is not calibrated regularly? Can such a battery be used with confidence? The battery should function normally and there are no safety concerns, but the digital SoC readout becomes unreliable.
When designing a BMS, engineers often make the mistake of assuming that a battery will always stay young. As with us folks, batteries age and this is manifested in capacity loss. The SoC gauge will always show a glowing 100% after each charge. Capacity is conveniently hidden from the user.
Several methods to estimate battery SoH exist and are in development. This article describes five technologies. They are:
Coulomb counting as part of an integral battery system in mobile phones and laptops
Reading the FCC register in an SMBus battery*
Adding Read-and-charge(RAC) to a charger
Rapid-tests by taking a snapshot of the “chemical battery”
Traditional full cycle.
* SMBus stands for System Management Bus and is one of the most common “smart battery systems” for portable battery applications. Other systems provide similar features.
1. Coulomb Counting
Some mobile phones and laptops come with software that estimates SoH. This is done by coulomb count, but service technicians familiar with such systems say that the readings are not reliable. Part of this arises from inaccuracies in measuring discharge current when running different applications. The load is pulsed and not all mobile phones allow current measurement. This prevents the use of the capacity app in such cases.
Coulomb counting is also used to estimate the capacity of e-bikes. Although carefully monitored, the SoH readings are not revealed to the user. For reasons of anonymity, only authorized personnel have access by a security code. Device manufacturers fear that showing a capacity of less than 100% would raise too many consumer complaints, especially during the warranty period. Such secrecy typically only applies to consumer products; industrial applications differ.
SoC of a portable device is usually shown in percentage or in runtime minutes; the EV does this with driving range in kilometers or miles. A true assessment in Ah, as is possible with a tank of gasoline in a vehicle is not possible with the battery. The amount of Ah a battery can capture as it ages goes into hiding. Consumer concerns aside, knowing battery capacity has the benefit of connecting Ah with runtime and predicting battery replacement on capacity, the leading battery health indicator.
2. Reading the FCC Register in an SMBus Battery
Chargers are advancing and will soon offer battery SoH readouts. As industries switch to the SMBus battery, FCC (full charge capacity) stored in the battery can interpret SoH by the coulomb count taken while the battery is in service. This allows checking SoH by simply inserting the battery into a charger. The SMBus battery has a further advantage of providing a digital serial number that will enable storing historic battery performance information in a database.
If the FCC reading in such a charger is above the user-set Pass/Fail threshold, then the battery will pass; if below, calibration is needed. Calibration applies a full charge and discharge cycle to reset the flags and ascertain the true capacity of the “chemical battery.” If the capacity is above target, then the battery passes and the FCC reading is corrected; results below the line calls for a battery replacement. Digital FCC peripherals are normally lower than the actual battery capacity and this prevents a false positive result. Figure 3 demonstrates the concept in graphics. Cadex is developing a charger line that encompasses this feature under the Universal Diagnostic Charger (UDC) series.
Figure 3. Battery SoH evaluation on the fly by reading FCC.
Pass/Fail is set to 80%. Not meeting the threshold does not constitute a failed battery but prompts to calibration.
FCC references are normally lower than the actual battery capacity. This prevents a false positive result.
3. Read-and-charge (RAC)
The UDC chargers in development will feature Read-and-charge (RAC) diagnostic technology to estimate battery capacity in the absence of FCC. A RAC-based charger requires a onetime calibration for each battery model; cycling a good battery delivers this parameter that is stored in the charger or battery adapter.
The RAC charger estimates SoC and capacity of a regular (dumb) battery. Tests are showing better accuracies with RAC than what is possible with the FCC capture of an SMBus battery. RAC validates battery performance and does quality control with no extra logistics. The green “ready” light at the end of service assures that the battery is fully charged and meets the required capacity threshold. A faded battery is identified and shown the backdoor.
4. Rapid-test
The Rapid-test takes a snapshot of a chemical battery in seconds or minutes. Electrochemical Dynamic Response uses pulse technology; the more complex Multi-model Electrochemical Impedance Spectroscopy (Spectro™) scans the battery with multiple frequencies. Rapid-tests have the advantage of testing a broad range of batteries without smarts on the fly, but this requires complex software and hardware that is supported by battery-specific parameters and matrices.
It is important to note that the capacity of a battery cannot be measured similar to voltage, current and temperature. SoH can be estimated to various degrees of accuracy based on its symptoms; however, a reliable measurement is not possible if the symptoms are vague or not present.
Many makers of battery test devices promise capacity estimation by measuring the internal battery resistance. This is misleading and advertising features that are outside the equipment’s capabilities confuses the industry into believing that complex tests can be done with basic methods. Resistance-based instruments can indeed identify a dying or dead battery — so does the user. Battery testers are often overstated similar to promoting a shampoo that promises to grow lush hair on a man’s bald head.
5. Full Cycle
This method applies a full charge/discharge cycle to read the capacity of the chemical battery. The time discharging a battery with a regulated discharge current determines the capacity. Although accurate and also serving as calibration of a smart battery, a full cycle is time consuming and is not always practical, especially when checking mobile phone batteries.
Philosophy and Conclusion
Many device manufacturers do not provide sufficient guidelines on battery maintenance and the user is ill-informed on battery performance and when to replace a fading battery. There is a “hand-washing” when passing a device to the workforce, saying, “You are on you own — good luck with the battery.”
Developing a better battery is incomplete without improving the diagnostics. Only a well-designed diagnostic system that monitors state-of-function (SoF) will turn the battery into a reliable, safe, cost efficient and environmentally sustainable power source. The modern battery will interact with system and user, state its needs, proclaim what it can deliver and establish definite limitations.
Last Updated: 2-Nov-2016
Batteries In A Portable World
The material on Battery University is based on the indispensable new 4th edition of "Batteries in a Portable World - A Handbook on Rechargeable Batteries for Non-Engineers" which is available for order through Amazon.com.
Find An Article
Table of Contents
-
Introduction 4>
- BU-001: Sharing Battery Knowledge
- BU-002: Introduction
- BU-003: Dedication
-
Crash Course on Batteries 4>
- BU-101: When Was the Battery Invented?
- BU-102: Early Innovators
- BU-103: Global Battery Markets
- BU-103a: Battery Breakthroughs: Myth or Fact?
- BU-104: Getting to Know the Battery
- BU-104a: Comparing the Battery with Other Power Sources
- BU-104b: Battery Building Blocks
- BU-104c: The Octagon Battery – What makes a Battery a Battery
- BU-105: Battery Definitions and what they mean
- BU-106: Advantages of Primary Batteries
- BU-106a: Choices of Primary Batteries
- BU-107: Comparison Table of Secondary Batteries
-
Battery Types 4>
- BU-201: How does the Lead Acid Battery Work?
- BU-201a: Absorbent Glass Mat (AGM)
- BU-201b: Gel Lead Acid Battery
- BU-202: New Lead Acid Systems
- BU-203: Nickel-based Batteries
- BU-204: How do Lithium Batteries Work?
- BU-205: Types of Lithium-ion
- BU-206: Lithium-polymer: Substance or Hype?
- BU-208: Cycling Performance
- BU-209: How does a Supercapacitor Work?
- BU-210: How does the Fuel Cell Work?
- BU-210a: Why does Sodium-sulfur need to be heated
- BU-210b: How does the Flow Battery Work?
- BU-211: Alternate Battery Systems
- BU-212: Future Batteries
- BU-214: Summary Table of Lead-based Batteries
- BU-215: Summary Table of Nickel-based Batteries
- BU-216: Summary Table of Lithium-based Batteries
- BU-217: Summary Table of Alternate Batteries
- BU-218: Summary Table of Future Batteries
-
Packaging and Safety 4>
- BU-301: A look at Old and New Battery Packaging
- BU-301a: Types of Battery Cells
- BU-302: Series and Parallel Battery Configurations
- BU-303: Confusion with Voltages
- BU-304: Why are Protection Circuits Needed?
- BU-304a: Safety Concerns with Li-ion
- BU-304b: Making Lithium-ion Safe
- BU-304c: Battery Safety in Public
- BU-305: Building a Lithium-ion Pack
- BU-306: What is the Function of the Separator?
- BU-307: How does Electrolyte Work?
- BU-308: Availability of Lithium
- BU-309: How does Graphite Work in Li-ion?
- BU-310: How does Cobalt Work in Li-ion?
- BU-311: Battery Raw Materials
-
Charge Methods 4>
- BU-401: How do Battery Chargers Work?
- BU-401a: Fast and Ultra-fast Chargers
- BU-402: What Is C-rate?
- BU-403: Charging Lead Acid
- BU-404: What is Equalizing Charge?
- BU-405: Charging with a Power Supply
- BU-406: Battery as a Buffer
- BU-407: Charging Nickel-cadmium
- BU-408: Charging Nickel-metal-hydride
- BU-409: Charging Lithium-ion
- BU-409a: Why do Old Li-ion Batteries Take Long to Charge?
- BU-409b: Charging Lithium Iron Phosphate
- BU-410: Charging at High and Low Temperatures
- BU-411: Charging from a USB Port
- BU-412: Charging without Wires
- BU-413: Charging with Solar, Turbine
- BU-413a: How to Store Renewable Energy in a Battery
- BU-414: How do Charger Chips Work?
- BU-415: How to Charge and When to Charge?
-
Discharge Methods 4>
- BU-501: Basics about Discharging
- BU-501a: Discharge Characteristics of Li-ion
- BU-502: Discharging at High and Low Temperatures
- BU-503: Determining Power Deliver by the Ragone Plot
- BU-504: How to Verify Sufficient Battery Capacity
-
"Smart" Battery 4>
- BU-601: How does a Smart Battery Work?
- BU-602: How does a Battery Fuel Gauge Work?
- BU-603: How to Calibrate a “Smart” Battery
- BU-603a: Calibrating SMBus Batteries with Impedance Tracking
- BU-604: How to Process Data from a “Smart” Battery
- Testing and Calibrating Smart Batteries
-
From Birth to Retirement 4>
- BU-701: How to Prime Batteries
- BU-702: How to Store Batteries
- BU-703: Health Concerns with Batteries
- BU-704: How to Transport Batteries
- BU-704a: Shipping Lithium-based Batteries by Air
- BU-704b: CAUTION & Overpack Labels
- BU-704c: Class 9 Label
- BU-704d: NFPA 704 Rating
- BU-704e: Battery for Personal and Fleet Use
- BU-705: How to Recycle Batteries
- BU-705a: Battery Recycling as a Business
- BU-706: Summary of Do's and Don'ts
-
How To Prolong Battery Life 4>
-
General 4>
- BU-801: Setting Battery Performance Standards
- BU-801a: How to Rate Battery Runtime
- BU-801b: How to Define Battery Life
- BU-802: What Causes Capacity Loss?
- BU-802a: How does Rising Internal Resistance affect Performance?
- BU-802b: What does Elevated Self-discharge Do?
- BU-802c: How Low can a Battery be Discharged?
- BU-803: Can Batteries Be Restored?
- BU-803a: Cell Matching and Balancing
- BU-803b: What causes Cells to Short?
- BU-803c: Loss of Electrolyte
-
Lead Acid 4>
- BU-804: How to Prolong Lead-acid Batteries
- BU-804a: Corrosion, Shedding and Internal Short
- BU-804b: Sulfation and How to Prevent it
- BU-804c: Acid Stratification and Surface Charge
- BU-805: Additives to Boost Flooded Lead Acid
- BU-806: Tracking Battery Capacity and Resistance as part of Aging
- BU-806a: How Heat and Loading affect Battery Life
-
Nickel-based 4>
- BU-807: How to Restore Nickel-based Batteries
- BU-807a: Effect of Zapping
-
Lithium-ion 4>
- BU-808: How to Prolong Lithium-based Batteries
- BU-808a: How to Awaken a Sleeping Li-ion
- BU-808b: What Causes Li-ion to Die?
- BU-808c: Coulombic and Energy Efficiency with the Battery
- BU-809: How to Maximize Runtime
- BU-810: What Everyone Should Know About Aftermarket Batteries
- BU-811: Assuring Minimum Operational Reserve Energy (MORE)
-
Battery Testing and Monitoring 4>
- BU-901: Fundamentals in Battery Testing
- BU-901b: How to Measure the Remaining Useful Life of a Battery
- BU-902: How to Measure Internal Resistance
- BU-902a: How to Measure CCA
- BU-903: How to Measure State-of-charge
- BU-904: How to Measure Capacity
- BU-905: Testing Lead Acid Batteries
- BU-905a: Testing Starter Batteries in Vehicles
- BU-905b: Knowing when to Replace a Starter Battery
- BU-906: Testing Nickel-based Batteries
- BU-907: Testing Lithium-based Batteries
- BU-907a: Battery Rapid-test Methods
- BU-907b: Advancements in Battery Testing
- BU-907c: Cloud Analytics in Batteries
- BU-908: Battery Management System (BMS)
- BU-909: Battery Test Equipment
- BU-910: How to Repair a Battery Pack
- BU-911: How to Repair a Laptop Battery
- BU-915: Testing Battery with EIS
- BU-916: Deep Battery Diagnostics
- BU-917: In Search for Performance Transparency with Batteries
- BU-918: Battery Endurance Plan
-
Amazing Value of a Battery 4>
- BU-1001: Batteries in Industries
- BU-1002: Electric Powertrain, then and now
- BU-1002a: Hybrid Electric Vehicles and the Battery
- BU-1002b: Environmental Benefit of the Electric Powertrain
- BU-1003: Electric Vehicle (EV)
- BU-1003a: Battery Aging in an Electric Vehicle (EV)
- BU-1004: Charging an Electric Vehicle
- BU-1005: Does the Fuel Cell-powered Vehicle have a Future?
- BU-1006: Cost of Mobile and Renewable Power
- BU-1007: Net Calorific Value
- BU-1008: Working towards Sustainability
- BU-1009: Battery Paradox - Afterword
-
Information 4>
- BU-1101: Glossary
- BU-1102: Abbreviations
- BU-1103: Bibliography
- BU-1104: About the Author
- BU-1105: About Cadex (Sponsor)
- BU-1106: Author's Creed
- BU-1107: Disclaimer
- BU-1108: Copyright
-
Learning Tools 4>
- BU-1501 Battery History
- BU-1502 Basics about Batteries
- BU-1503 How to Maintain Batteries
- BU-1504 Battery Test & Analyzing Devices
- BU-1505 Short History of Cadex
-
Battery Articles 4>
- Perception of a Battery Tester
- Green Deal
- Risk Management in Batteries
- Predictive Test Methods for Starter Batteries
- Why Mobile Phone Batteries do not last as long as an EV Battery
- Battery Rapid-test Methods
- How to Charge Li-ion with a Parasitic Load
- Ultra-fast Charging
- Assuring Safety of Lithium-ion in the Workforce
- Diagnostic Battery Management
- Tweaking the Mobile Phone Battery
- Battery Test Methods
- Battery Testing and Safety
- How to Make Battery Performance Transparent
- Battery Diagnostics On-the-fly
- Making Battery State-of-health Transparent
- Batteries will eventually die, but when and how?
- Why does Pokémon Go rob so much Battery Power?
- How to Care for the Battery
- Tesla’s iPhone Moment — How the Powerwall will Change Global Energy Use
- Painting the Battery Green by giving it a Second Life
- Charging without Wires — A Solution or Laziness
- What everyone should know about Battery Chargers
- A Look at Cell Formats and how to Build a good Battery
- Battery Breakthroughs — Myth or Fact?
- Rapid-test Methods that No Longer Work
- Shipping Lithium-based Batteries by Air
- How to make Batteries more Reliable and Longer Lasting
- What causes Lithium-ion to die?
- Safety of Lithium-ion Batteries
- Recognizing Battery Capacity as the Missing Link
- Managing Batteries for Warehouse Logistics
- Caring for your Starter Battery
- Giving Batteries a Second Life
- How to Make Batteries in Medical Devices More Reliable
- Possible Solutions for the Battery Problem on the Boeing 787
- Impedance Spectroscopy Checks Battery Capacity in 15 Seconds
- How to Improve the Battery Fuel Gauge
- Examining Loading Characteristics on Primary and Secondary Batteries
-
Language Pool 4>
- BU-001: Compartir conocimiento sobre baterías
- BU-002: Introducción
- BU-003: Dedicatoria
- BU-104: Conociendo la Batería
- BU-302: Configuraciones de Baterías en Serie y Paralelo
-
Batteries in a Portable World book 4>
- Change-log of “Batteries in a Portable World,” 4th edition: Chapters 1 - 3
- Change-log of “Batteries in a Portable World,” 4th edition: Chapters 4 - 10